Law and Economics

Introduction to the Economic Approach to Law

Francisco Poggi University of Mannheim - Fall 2022

Goal of the course

General goal: Present a *cohesive* and *formal* theory of pure Law through the lens of economics.

Main references:

- Miceli, T. J. (2017). *The Economic Approach to Law.* Stanford University Press, 3rd edition
- Cooter, R. and Ulen, T. (2016). Law and Economics.
 Berkeley Law Books, 6th edition

Legal Theory:

 Kelsen, H. (1997). Introduction to the Problems of Legal Theory. Oxford University Press

Structure

- Two meetings each week (Mon & Wed, 8:30 AM, Room S031).
- Questions encouraged.
- Office hours: Arranged via email.
- Assignments:
 - Problem sets (graded).
 - Open questions (mandatory but not graded). txt.
- Grading: PS (20%), Midterm (30%), and Final Exam (50%).

• Website: https://www.franciscopoggi.com/courses/

• Email: poggi@uni-mannheim.de

- Questions, comments, etc.
- $^{\bullet}$ Recommended subject: Law and Econ Fall 2022

- This week: broad introduction and review of economic concepts.
- Following weeks:
 - Tort Law.
 - Property Law.
 - Intellectual Property Law.
 - Economics of Litigation.
 - Economics of Crime.

Law: system of rules regulating actions, which might be enforced by the imposition of penalties.

Four major categories:

- Tort Law
- Contract Law
- Property Law
- Criminal Law

Tort Law

Tort Law

Area of the law that seeks to remedy losses or injury with monetary compensation.

Examples:

- Defamation,
- Medical malpractice,
- Defective products,
- Dog bite.

Contract Law

Area of the law that regulates legally binding agreements.

- Importance of consent.
- What contracts are legal?
- Breach of contract.

Property Law

Area of law that governs ownership.

- Property is a *bundle* of rights.
- How are property rights initially assigned? What can be owned?
- What can owners do with their property?
- What are remedies for violation of property rights?

Criminal Law

Criminal Law

Related to *crime*. Prescribes conducts perceived as threatening, harmful, or otherwise endangering to the property, health, safety, and moral welfare of people.

- Emphasis on punishment/rehabilitation (instead of victim compensation): Fines, jail, capital and corporal punishment, house arrest. Loss ability to hold office.
- Victimless crimes.
 - Consentual but illegal sexual acts.
 - Gambling.
 - Recreational drug use/possession.

Economics brings:

- 1. A theory of behavior.
- 2. A standard to evaluate laws: *efficiency*.

Theory of Behavior

- Decision-makers react to incentives.
 - Legal sanctions as implicit prices for certain behavior.
 - (Compensated) Law of Demand: \uparrow prices $\Rightarrow \downarrow$ demand.
 - Legal sanctions guide behavior in certain directions.
- This does **not** mean that the threat of sanctions is the **only** thing that affects behavior.
 - Sense of rightness.
 - Customs, etc.
- Agregate reaction. General equilibrium.

Standard: Efficiency

- Is efficiency a valid standard?
 - What about justice? fairness? or morality?
 - Kaplow and Shavell (2001): efficiency should be the only criterion.
 - (Others disagree.)

Pareto Efficiency

- Let \mathcal{A} be the set of all allocations and I the set of agents.
- Each agent $i \in I$ gets an utility $u_i : \mathcal{A} \to R$.

Definition

An allocation $a \in \mathcal{A}$ is *Pareto efficient* if there is no $a' \in \mathcal{A}$ such that

 $u_i(a') \ge u_i(a)$ for all $i \in I$ $u_i(a') > u_i(a)$ for some $i \in I$

Kaldor-Hicks Efficiency

- We add transfers in a world of quasilinear preferences.
- Let \mathcal{A} be the set of all physical allocations, x the monetary allocation and I the set of agents.
- Each agent $i \in I$ gets an utility $\hat{u}_i(a, x) = u_i(a) + x_i$.

Definition

An allocation $a \in \mathcal{A}$ is *Kaldor-Hicks efficient* if there is no $a' \in \mathcal{A}$ and $x \in \mathbb{R}^n$ such that

$$u_i(a', x) \ge u_i(a, 0) \quad \text{for all } i \in I$$

$$u_i(a', x) > u_i(a, 0) \quad \text{for some } i \in I$$

$$\sum_{i \in I} x_i = 0$$

Definition An allocation $a^* \in \mathcal{A}$ maximizes welfare iff $a^* \in \arg \max_{a \in A} \sum_{i \in I} u_i(a)$

Claim

a is Kaldor-Hicks efficient \Leftrightarrow a maximizes welfare.

Consensual vs Non-Consensual Exchange

Consent guarantees mutual gains from trade.

- A buyer and a seller. Single object.
- Buyer values the object v, seller values it c.
- **Trade**: the buyer gets the good and pays a price p to the seller.
- There are costs associated with trade k_B and k_S .
- Efficient to trade when the gains (v c) are larger than the costs $(k_B + k_S)$

Claim: mutual consent to trade implies that trade is efficient.

$$v > p + k_B$$
 and $p - k_S > c$
 $v - k_B > p$ and $p > c + k_S$

By transitivity, $v - k_B > c + k_S$. Rearranging we get $v - c > k_B - k_S$.

Consensual vs Non-Consensual Exchange

Not true: no trade implies trade was inefficiency.

- it could be that it is efficient to trade but parties don't reach an agreement.
- (Although if it is efficient to trade, there must exist a price such that both parties would be better off trading.)

unilateral consent or "robbery":

- If there is a robbery: $v > k_B$.
- This doesn't say much about v c vs $k_B + k_S$.

Dealing with Externalities

Classical externality example: the rancher and the farmer.

- A rancher lives beside a farmer.
- Cattle wonders off onto the farmer's property and damages the corn plantation.

- Herd size: $x \ge 0$.
- Rancher benefit: $\pi(x)$ str. concave, $\pi(0) = 0$, interior maximum. E.g. $\pi(x) = p \cdot x(10 - x)$.
- Cost to farmer: c(x), convex, c(0) = c'(0) = 0. E.g. $c(x) = c \cdot \frac{x^2}{2}$.

Dealing with Externalities

• Socially optimal herd size x^* solves

$$\max_{x \ge 0} \qquad \pi(x) - c(x).$$

• x^* characterized by FOC $\pi'(x^*) = c(x^*)$.

ľ

- Independent actions: rancher ignores the crop damage. Chooses size \hat{x} that solves $\max_{x\geq 0} \pi(x)$.
- This is inefficiently high:

$$\pi'(\hat{x}) = 0 < c'(x^*) = \pi'(x^*) \quad \Rightarrow \quad \hat{x} > x^*$$

• Solutions?

Solution 1: Prohibition.

- A law is passed that puts a cap on the herd size at x^* .
- Incentives: fine if the law is violated.
- Question: How large should the fine be for efficiency to be achieved?

Dealing with Externalities

Solution 2: Reallocation of property rights.

- Farmer buys the Ranch.
- Rancher buys the Farm.
- Farmer and Rancher form a company that jointly operates the Ranch and the Farm.

• Company goal:

$$\max_{x \ge 0} \quad \pi(x) - c(x)$$

Dealing with Externalities

Solution 3: Pigouvian taxes.

- A constant tax τ is paid per unit.
- Rancher's objective function:

$$\max_{x \ge 0} \quad \pi(x) - \tau \cdot x$$

• What tax rate achieves the efficient allocation?

1

Coase Theorem: actually sometimes you don't need any of the previous solutions.

- If the rancher and farmer can negotiate with no transaction costs, they will reach an efficient allocation.
- For example, the farmer pays a certain amount to the rancher to not add animals beyond x^* .

Coase "Theorem"

In the absence of transaction costs, bargaining will lead to a Pareto optimal allocation of resources (independently of how rights are initially allocated).

Coase, R. H. (1960). The problem of social cost. *The Journal of Law and Economics*, III

Solution 4: Liability.

- Rancher must compensate the farmer for *all* damages caused by the cattle.
- This is a specific type of liability, injurer is fully responsible independent of his chosen action.
- (There are other forms of liability that we are going to study when we start with Tort Law.)

Fencing Option

- Suppose now that the entire damage from cattle can be eliminated by either:
 - a. fencing the farmers land (cost k_F)
 - b. fencing the ranch (cost $k_R < k_F$).

• **K-H Efficient**: to fence the ranch and choose size \hat{x} iff

$$\pi(\hat{x}) - k_R \ge \pi(x^*) - c(x^*)$$

• Otherwise not fence and choose size x^* .

Fencing Option

No liability: Rancher not liable for damages.

- Rancher will not want to face the cost of fencing.
- Farmer might prefer to fence his land or
- Even better! Pay the rancher to fence his.
- Efficiency is achieved.

Liability: Rancher liable for all damages.

- Rancher can produce at a lower capacity to reduce costs.
- or even better! Fence the ranch and produce at max.
- Efficiency is achieved again!
- Different wealth.

Coase Theorem in Action

https://www.nytimes.com/2019/07/22/nyregion/manhattan-real-estate-views-air-rights.html

How Much Is a View Worth in Manhattan? Try \$11 Million

When a group of loft owners were confronted with a proposed tower that would have blotted out their views, they gave a developer \$11 million to not build.

Back to Coase Theorem

- In a Coasian world (no transaction costs), efficiency will be achieved independently of the legal framework.
 - Law only affects the distribution of wealth.

- However, the world is not Coasian.
 - Most interesting economic interactions involve:
 - Transaction costs,
 - coordination issues,
 - information asymmetry.
 - Law changes outcomes and might improve efficiency.

Bonus: Kaplow Shavell (2001)

- Let $\mathcal{A} = \mathbb{R}^2$ be a set of allocations, typical element $a = (a_0, a_1)$.
- There are n individuals.
- Preferences given by $U_i(a)$.
- U_i is strictly increasing in a_0 for all i.
- Social preferences represented by W(a) continuous.
- Question: should the utility depend on a beyond utilities U_i ?

Definition 1

A social preference W is welfarist if there exists a function $w:R^n\to R$ such that

$$W(a) = w(U_1(a), U_2(a), ..., U_n(a))$$

(equivalently, for all a, a' such that $U_i(a) = U_i(a')$ for all i, W(a) = W(a').)

Definition 2

Social preference W satisfies the (weak) Pareto principle if $\forall a, a' \in \mathbb{R}^2$,

 $U_i(a') > U_i(a) \quad \forall i \quad \Rightarrow \quad W(a') \ge W(a)$

Theorem (Kaplow-Shavell)

If W is not welfarist then it violates the Pareto principle.

Proof.

Start with W not welfarist. Then there exists a, a' such that

$$U_i(a) = U_i(a') \qquad \forall i \tag{1}$$

$$W(a) \neq W(a') \tag{2}$$

WLOG, assume W(a) > W(a'). Define $a'' = (a'_0 + \epsilon, a'_1)$. By continuity of W, there is an ϵ small enough so that W(a) > W(a''). However, $U_i(a'') > U_i(a)$ for all i.

- Coase, R. H. (1960). The problem of social cost. *The Journal of Law* and *Economics*, III.
- Cooter, R. and Ulen, T. (2016). *Law and Economics*. Berkeley Law Books, 6th edition.
- Kaplow, L. and Shavell, S. (2001). Any non-welfarist method of policy assessment violates the pareto principle. *Journal of Political Economy*, 112:249–251.
- Kelsen, H. (1997). Introduction to the Problems of Legal Theory. Oxford University Press.
- Miceli, T. J. (2017). *The Economic Approach to Law.* Stanford University Press, 3rd edition.