Law and Economics Contract Law II

Francisco Poggi

- Consider two parties that contract.
- When is it efficient to breach an enforceable contract?
 - Unforeseen changes can render the contract inefficient.

- Ideal contract law should generate incentives for parties to breach contracts only when it is efficient to do so.
 - We will focus on the design of *breach remedies*.

• Consider a buyer and a seller that contract over the production and delivery of some good.

- Reasons for efficient breach:
 - Realized high cost of promise keeping. (Think of the hold-up model from before.)
 - Realized low value.
 - Third party that values more.
 - Third party that can produce cheaper.

The Efficient Breach Model

• In this model, we focus on uncertainty about costs.

- Value for Buyer V (deterministic).
- Cost for Seller C (random variable).
- Timing:
 - Parties contract: decide a price P.
 - **Reliance**: Buyer makes investment *R* that is not *salvageable*.
 - C is realized and publicly observable.
 - Seller decides to *perform* (a = 1) or *breach* (a = 0).

• The non-salvageable investment R is what makes contract useful.

Goal

• Let ψ be the damages that the seller must pay in the event of breach.

Seller:
$$a(P-C) - (1-a)\psi$$

Buyer: $a(V-P) + (1-a)\psi - R$
Society: $a(V-C) - R$

• **Goal**: determine a breach remedy function ψ that induces the seller to breach efficiently.

- Efficient to breach when C > V.
- What can ψ depend on? C, P (V and R are constants).

Seller's Decision

• The seller will choose to breach (a = 0) when:

$$P - C < -\psi \qquad \Rightarrow \qquad \underbrace{C}_{\text{cost of performing}} > \underbrace{P + \psi}_{\text{total transforming}}$$

cost of performing

cost of breaching

Trivial Implementation

• The seller is "killed" if she breaches inefficiently.

$$\psi = \begin{cases} \infty & C < V \\ 0 & C \ge V. \end{cases}$$

- Efficiency is achieved!
- Issue: The remedy rule depends on C.
 - Might be unobservable.
 - Seller might inflate costs.

Damages in Practice

• Expectation damages: ψ leaves the promisee as well of as if the contract had been performed.

$$\underbrace{V - P - R}_{\text{contract performed}} = \underbrace{\psi - R}_{\text{breach}} \qquad \Rightarrow \qquad \psi^{ED} = V - P$$

• Reliance damages: ψ that leaves the promisee as well of as if contract was never made.

$$\underbrace{\psi - R}_{\text{breach}} = \underbrace{0}_{\text{no contract}} \qquad \Rightarrow \qquad \psi^R = R$$

No Damages

 $\psi^{\textit{ND}}=\mathbf{0}$

• Seller chooses to breach (a = 0) iff

$$C > P + \psi^{ND} \qquad \Rightarrow \qquad C > P$$

• Efficiency is, in general, not achieved.

- $P \leq V$. Why?
- Whenever breach is efficient, the seller will breach.
- Seller breaches inefficiently often.

Expectation Damages

 $\psi^{\textit{ED}} = \textit{V} - \textit{P}$

• Seller chooses breach (a = 0) iff

$$C > P + \psi^{ED} \Rightarrow C > P + V - P = V$$

- Efficiency is achieved!
- This remedy rule does not depend on *C*.

Reliance Damages

 $\psi^{R} = R$

• Seller chooses breach (a = 0) iff

$$C > P + \psi^R \qquad \Rightarrow \qquad C > P + R$$

- Efficiency is, in general, not achieved.
- $P + R \leq V$. Why?
- Whenever breach is efficient, the seller will breach.
- The Seller breaches inefficiently often (although less than with no damages).
- Remedy rule does not depend on C or V.

Incentives for Efficient Reliance

- Suppose now that value V depends on the *level* of Reliance.
 - Value for Buyer V(R) (deterministic concave function).
 - Cost for Seller C (random variable cdf F).

- Timing:
 - Parties contract: agree on a price *P*.
 - **Reliance**: Buyer makes investment *R* that is not *salvageable*.
 - C is realized and publicly observable.
 - Seller decides if she performs (a = 1) or breaches (a = 0).

Buyer's Decision

• If performance was certain:

$$\max_{R} \quad V(R) - P - R$$

•
$$V'(R) = 1.$$

• When perfomance is uncertain (Probability p), investment is lower.

$$\max_{R} \quad p \cdot [V(R) - P] - R$$

• V'(R) = 1/p.

• Suppose performance is efficient. Then efficient reliance solves:

$$\max_{R} \quad E[\max\{V(R) - C, 0\}] - R$$

• Solution R^* .

• Would Expectation Damages implement R*?

(Unlimited) Expectation Damages

$$\psi^{ED} = V(R) - P$$

- ED generates efficient breach. Why?
- Thus, Buyer's decision:

$$\max_{R} F(V(R)) \cdot [V(R) - P] + (1 - F(V(R))) \cdot \underbrace{\psi^{ED}}_{V(R) - P} - R$$

- Solution: \hat{R} .
- There is over-investment in reliance.

Limited Expectation Damages

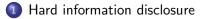
$$\psi^{LED} = V(R^*) - P$$

- Seller breaches if $C > P + \psi = P + V(R^*) P = V(R^*)$.
- Thus $p = F(V(R^*))$.
- Buyer's decision:

$$\max_{R} F(V(R^*)) \cdot [V(R) - P] + (1 - F(V(R^*)))[\underbrace{\psi^{LED}}_{V(R^*) - P}] - R$$

- It achieves efficiency!
 - Rule does not depend on *R*.
 - Rule depends on *R*^{*}, so implementation requires knowing something about distribution of costs.

Overview



Hard Information Model

- Model
 - Players: one Seller and multiple potential buyers.
 - Quality of the good $\theta \sim U[0, 10]$.
 - $E[\theta] = 5.$
 - **S** knows the quality of the good.
- Timing
 - Seller *discloses information* about the good.
 - Buyers observe disclosed information and simultaneously offer a price (Bertrand competition). Let *p* be the highest offer.
 - Final payoffs are:

Buyer : $\theta - p$ Seller : p

Full Disclosure Theorem

• **Disclosure technology**: Report $r \in \{\emptyset, \theta\}$

- This is hard information: If r = 4 then the buyers know that $\theta = 4$.
- With $r = \emptyset$ not so clear.

• Equilibrium price: $p(r) = E[\theta|r]$

$$p(r) = r$$
 for $r \neq \emptyset$.

■ What about p(∅)?

Full Disclosure Theorem

Claim

In equilibrium, $p(\emptyset) = 0$.

- Suppose that $p(\emptyset) > 0$. Then
 - All $\theta > p(\emptyset)$ disclose.
 - All $\theta < p(\emptyset)$ do not disclose.
- But then,

$$E[heta|\emptyset] < p(\emptyset)$$

• This cannot be an equilibrium. Thus, it must be that $p(\emptyset) = 0$.

Intuition (discrete support)

- • Start from $\theta = 10$. He prefers to disclose since $E[\theta|r = \emptyset] \le 10$.
 - So if a seller does not disclose, his quality must be at most 9.
 - Then $E[\theta|r=\emptyset] \leq 9$.
 - Consider $\theta = 9$. He prefers to disclose. and so on...

• • This is known as *unraveling*.

- There is full disclosure of the private information.
- ($\theta = 0$ is indifferent between revealing or not, but he is identified independently of that.)

Disclosure Laws

• Since there is full disclosure, there is no need for disclosure laws!

- Two variants that lead to imperfect disclosure:
 - Uninformed sellers.
 - Disclosure costs.

• In the benchmark model, **S** knows the quality of the good.

- Same model as before, but with one change:
 - With probability γ , the seller is uninformed.
 - This is independent of product quality.
 - Uninformed sellers can only send the message \emptyset .

- We construct an equilibrium with price $p(\emptyset) = \bar{p}$.
 - Who would disclose? Informed seller with $\theta > \bar{p}$.
 - $\bullet~$ If ${\boldsymbol{S}}$ doesn't disclose it might be for two reasons:
 - **S** is uninformed.
 - **S** is informed, but $\theta \leq \bar{p}$.
 - Let q be the probability of uninformed given $r = \emptyset$. Note that this is not necessarily equal to $\gamma!$

$$\mathsf{E}[heta|\mathsf{r}=\emptyset]=\mathsf{q}\cdot\mathsf{E}[heta]+(1-\mathsf{q})\cdot\mathsf{E}[heta| heta\leqar{\mathsf{p}}]$$

• Computing q using Bayes' rule:

$$q = \Pr(\text{uninformed}|r = \emptyset) = \frac{\Pr(r = \emptyset|\text{uninformed}) \cdot \Pr(\text{uninformed})}{\Pr(r = \emptyset)}$$
$$= \frac{1 \cdot \gamma}{\gamma + (1 - \gamma) \cdot \frac{\overline{p}}{10}}$$

• Buyers' zero-profit condition: $\bar{p} = E[\theta|r = \emptyset]$.

$$\bar{p} = \frac{\gamma}{\gamma + (1 - \gamma) \cdot \frac{\bar{p}}{10}} \cdot 5 + \frac{(1 - \gamma) \cdot \frac{\bar{p}}{10}}{\gamma + (1 - \gamma) \cdot \frac{\bar{p}}{10}} \cdot \frac{\bar{p}}{2}$$

• Solution: $\bar{p} = \frac{10 \cdot \sqrt{\gamma}}{1 + \sqrt{\gamma}}$.

- There is imperfect disclosure in equilibrium:
 - **S** hides the quality if she knows it is below \bar{p} .

- There is scope for requiring mandatory disclosure.
 - Sellers are mandated to disclose quality before they sell.

Effect of Mandatory Disclosure

• Buyers: unaffected (in expectation).

• Sellers:

- Uninformed types are better off.
- Informed types above $\bar{\theta}$ are unaffected.
- Informed types below $\bar{\theta}$ are worse off.
- Overall, sellers are unaffected in expectation.

• Reason: the object is always sold, and this allocation is efficient.

Uninformed sellers with inefficiencies

• Same model as before (with uniformed sellers) but

• The seller values the good 2, independently of the quality.

• Efficient allocation:

- Good should be sold if $\theta > 2$.
- **S** should keep the good if $\theta < 2$.

Uninformed sellers with inefficiencies

• Suppose $\gamma > 1/16$, so that

$$ar{p} = rac{10 \cdot \sqrt{\gamma}}{1 + \sqrt{\gamma}} > 2$$

- Then it is an equilibrium:
 - **S** discloses and sells when informed and sells for θ when $\theta > \bar{p}$.
 - **S** sends the empty message and sells for \bar{p} when $\theta \leq \bar{p}$.
 - **S** sends the empty message and sells for \bar{p} when uninformed.
- This equilibrium is inefficient!
 - Mandatory disclosure leads to better allocation.

Cost of Information

• Before, we assumed that some sellers were informed (exogenously).

- Now we consider a model similar to the benchmark, but with endogenous information acquisition.
 - To obtain quality information, the seller needs to pay a cost c > 0.

- Always inefficient to acquire information!
 - Purely wasteful.

Costly Information Acquisition

• Let's consider the equilibrium behavior of sellers under voluntary disclosure.

- **Claim**: When c < 5, there is an equilibrium in which all sellers acquire information.
 - This would correspond to $\gamma = 1$.
 - Thus, $p(\emptyset) = 0$.
 - The value of information for a seller is 5!

Mandatory Disclosure

- Suppose we mandate information disclosure, meaning that
 - Informed sellers have to disclose before the transaction.
 - Uninformed sellers don't have to disclose.

- If seller acquires info he <u>has</u> to disclose. He will sell for θ .
- When seller is uninformed, $p(\emptyset) = 5$.
- The private value of information is 0. We recover efficiency.