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Abstract

Firms racing to innovate often achieve interim technological breakthroughs that can

accelerate final innovation. When these advances are acquired privately, firms face a

choice: disclose the discovery or keep it secret. This paper studies how this trade-

off is shaped by the race structure and the intellectual property system. We develop a

dynamic model where firms allocate resources between direct development and research

for new technology. Our results show that excessively strong rewards from winning

the race and strong prior-use protections can discourage disclosure, thereby impeding

knowledge spillovers and slowing the social speed of innovation.
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1 Introduction

Firms racing to innovate often achieve intermediate breakthroughs—partial advances that do

not fully solve the underlying problem but bring them significantly closer to the final goal. For

example, the development of mRNA technology before the COVID-19 pandemic provided

a crucial building block for the rapid creation of vaccines. Similarly, progress in battery

chemistry has spurred innovation in electric vehicle design. In software, new frameworks or

tools can simplify subsequent development stages and accelerate the production of a finished

product. Although these discoveries are not the final innovation, they can meaningfully

reshape the dynamics of the race.

When firms privately acquire such interim technologies, they face a choice: patent the

discovery or keep it secret. This decision critically affects knowledge spillovers and the

overall pace of innovation. This paper studies the trade-off firms face between patenting and

concealment, and how it is shaped by the structure of the race and features of the intellectual

property system, such as patents and prior-use defenses.

To build high-level intuition, consider two firms, A and B, competing to innovate. Firm

A has privately obtained a new technology that accelerates innovation, while Firm B remains

uncertain about whether Firm A possesses this technology. Firm A must decide whether to

patent the technology (a = P ) or conceal it (a = C). Let V i
a denote Firm i’s expected

payoff given Firm A’s choice a, and let Wa = V A
a + V B

a denote the total expected payoff

under that choice. If Firm A patents the technology, it may offer to license it to Firm

B. Let WL denote the total expected payoffs under licensing. Assuming Firm A holds full

bargaining power in the licensing negotiation, its payoff after licensing is WL − V B
P . This

setting is illustrated in Figure 1.

Sharing the new technology can enhance overall welfare by enabling faster innovation

through knowledge spillover, implying WL > WP and WL > WC . However, patenting also

reveals to Firm B that Firm A possesses the new technology, potentially prompting Firm

B to adjust its R&D strategies based on this information. This may raise Firm B’s outside

option to V B
P > V B

C , thereby weakening Firm A’s bargaining position.

Firm A’s patenting decision hinges on whether the net gain from patenting and licensing
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Firm A

conceal (V A
C , V

B
C )

patent
license (WL − V B

P , V
B
P )

no license (V A
P , V

B
P )

Figure 1: Patenting Decision and Payoffs

(WL − V B
P ) exceeds the benefit of concealment (V A

C = WC − V B
C ), which is not immediately

clear. As a result, a hold-up problem may arise: although patenting and licensing could

maximize social welfare, Firm A may hesitate to patent the technology due to the risk of

empowering Firm B and reducing its own payoff.

To analyze this trade-off in the context of race structure and the patent system, we

consider a model in which firms race to develop a new product, such as a vaccine. The

first firm to succeed receives a fixed reward, such as temporary monopoly profits. Firms

can allocate their limited resources across various pathways. One option is to develop the

product using currently available technologies, e.g., developing the vaccine with the viral

vector technology.1 We refer to this approach as direct development. Alternatively, firms can

allocate resources to research, seeking to discover a faster new technology, e.g., researching

for messenger RNA (mRNA) technology.2 Once the new technology is discovered, the firm

can develop the product using it. Additionally, a firm chooses to disclose it through patenting

or keep it secret.

We begin by abstracting away from the patenting decision, assuming that the new tech-

nology is non-patentable. In this case, our model highlights the trade-off faced by resource-
1Oxford-AstraZeneca and Janssen (Johnson&Johnson) pursued vacinne development with viral vector

technology. It was used during recent disease outbreaks including the 2014-2016 Ebola outbreak in West
Africa. For more information, see the web page of the Centers for Disease Control and Prevention (CDC):
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/viralvector.html.

2Moderna and Pfizer-BioNTech utilized mRNA technology for vaccine development. It was not in prac-
tical use before the COVID-19 outbreak. Therefore, pharmaceutical firms needed to acquire fundamental
knowledge (e.g., a method to protect the mRNA sequence in the bloodstream during delivery) before devel-
oping a vaccine with this methodology. It offers the advantage of enabling firms to develop vaccines using
readily available materials. Hence, vaccines can be developed faster compared to methods such as viral
vector. For more information, see the web page of the Centers for Disease Control and Prevention (CDC):
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/mrna.html.
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constrained firms. On one hand, allocating more resources to researching a new technology

slows short-term development because fewer resources are deployed for direct development.

On the other hand, this approach increases the probability of obtaining a superior technology,

thereby raising the expected future development rate.

Based on this intuition, if firms can observe rival firms’ research progress—the acquisition

of a new technology—a firm’s optimal resource allocation may depend on information about

the competitor’s progress. Under certain parametric conditions, firms adopt a fall-back

strategy in equilibrium: they engage in research when there is no progress from rival, but

switch to direct development once the rival firm discovers the new technology, anticipating

the rival’s product development is imminent (Proposition 1 (b)). In contrast, when research

progress is private information, firms cannot condition their strategies on rivals’ discoveries,

making the fall-back strategy infeasible. Instead, firms either continue researching or, after

some time, partially reallocate resources from research to direct development (Proposition

3).

These differences in equilibrium behaviors between public and private information en-

vironments highlight how a rival’s outside option in the licensing process is shaped by the

disclosure or concealment of the new technology. In particular, the ability to react to dis-

covery information—enabled by disclosure—becomes a key channel through which the rival’s

outside option is elevated.

Next, we incorporate firms’ patenting decisions into the model. When a firm patents the

new technology, the firm secures an exclusive right to use it and can license it to the rival,

enabling controlled spillovers through licensing. However, patenting also signals to the rival

that the firm holds the new technology, allowing the rival to adjust its R&D strategy and

potentially raising its outside option in the licensing process. Thus, the patenting decision

captures the trade-off between disclosure and concealment highlighted earlier.

Our main results show that firms’ patenting decisions crucially depend on the stake

of winning the race (π) and the strength of prior-use defense (β)—the probability that a

patent application is challenged on the grounds of trade secret protection or prior commercial

use.3 We show that when both π and β are sufficiently high, firms conceal their discoveries
3Specifically, suppose Firm A applies for a patent on a new technology, while Firm B has independently
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of the new technology in equilibrium, thereby preventing knowledge spillover and slowing

innovation (Proposition 5). In contrast, if β is sufficiently small, or if π lies within an

intermediate range when β is high, firms choose to disclose and license the new technology,

leading to knowledge spillovers that accelerate the social speed of innovation (Proposition

4).

Our results yield empirical implications for how the stakes of winning the race and the

strength of prior-use protections shape innovation dynamics. When β is sufficiently high, the

model predicts a non-monotonic relationship between π and the social speed of innovation.

If π is too low, firms opt out of R&D altogether, resulting in no innovation. As π rises

to an intermediate range, firms engage in R&D and share interim discoveries, boosting

the overall rate of innovation. However, if π becomes excessively high, the incentive to

conceal technological breakthroughs in order to preserve competitive advantage dominates,

suppressing knowledge spillovers and slowing social innovation. Similarly, a stronger prior-

use defense can discourage patenting and public disclosure, leading firms to conceal their

discoveries and impeding the diffusion of technological advances.

These findings also offer policy insights. While strong rewards are necessary to spur R&D

investment, excessively high stakes in the product market can undermine knowledge diffu-

sion and slow cumulative innovation. Competition policy and limits on monopoly power thus

play an important role in balancing incentives for discovery and disclosure. Likewise, while

prior-use defenses protect early innovators, overly strong protections may weaken patent-

ing incentives and encourage secrecy, resulting in duplicative efforts and inefficiencies. Our

results underscore that policies intended to promote innovation along one margin can unin-

tentionally suppress it along another, highlighting the need for careful institutional design

to foster long-term technological progress.

discovered the same technology but has not patented it. Firm B challenges Firm A’s patent, the challenge
succeeds with probability β. In that case, both firms retain the right to use the new technology based on prior
commercial use (US Code §273). However, Firm B cannot claim exclusive rights—even if it discovered the
technology earlier—as it did not file for a patent, and trade secret does not extend to independent discoveries
by rival firms.
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Firm
New Technology

Discovery
Innovative
Product

λL · (1− σi
t)

Development using the old technology

µ · σi
t

Research
λH

Development

Figure 2: Development Paths and Resource Allocations

2 Model

Race Setup We consider a race between two firms, A and B, aiming to develop a new

product. Time is continuous and infinite: t ∈ [0,∞). The race ends when one of the firms

successfully develops the product. Throughout the race, firms incur a constant flow cost

c > 0, and the first firm to develop the product receives a lump-sum reward worth Π.4

Firms do not discount the future and maximize expected profits.

R&D Paths and Resource Allocation There are two technologies for product develop-

ment: the old and new technologies, with development rates λL and λH , respectively, where

λL < λH . Initially, both firms have access only to the old technology. The new technol-

ogy can be acquired either (i) through independent research or (ii) by licensing it from a

competitor that has patented it—we elaborate this later in the section.

To acquire the new technology through independent research, a firm must invest time and

resources. At each point in time, a firm without the new technology can flexibly allocate its

unit of resources between researching the new technology and developing the product using

the old technology. If Firm i allocates a fraction σ ∈ [0, 1] of resources to ‘research’ at time

t, it discovers the new technology at rate µ · σ. The remaining fraction 1 − σ of resources

contributes to the product development using the old technology at rate λL · (1− σ). Figure

2 illustrates the development paths and resource allocation framework.
4 This winner-takes-it-all payoff structure has been commonly used in the innovation race literature, e.g.,

Loury (1979); Lee and Wilde (1980); Denicolò and Franzoni (2010).
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Informational Setup Let N i = {N i
t}t≥0 be a point process indicating whether Firm i has

acquired the new technology through independent research, where N i
t = 1 if discovery has

occurred by time t and N i
t = 0 otherwise. We refer to N i as the research progress of Firm i.

We assume that firms observe their own research progress but not their competitors’

resource allocations. Regarding rivals’ research progress, we consider two settings: (i) public

research progress, where Firm i observes N j, and (ii) private research progress, where

Firm i cannot observe N j. These settings are analyzed in Section 3 and 4, respectively.

Patenting and Licensing Firms can patent the new technology upon discovery, provided

that no rival has already done so.5 A patent grants (i) exclusive rights to use the new

technology and (ii) the ability to license it to the rival. If Firm i patents the technology,

then Firm j cannot use the new technology without obtaining a license, even if Firm j had

independently discovered it.

A patent application by Firm i is publicly observable. If Firm j has also independently

discovered the technology, it can credibly and costlessly appeal the patent by presenting

verifiable research progress. If the appeal is successful, both firms are granted rights to use

the new technology; otherwise, Firm i holds the patent. Thus, the absence of an appeal from

Firm j reveals N j = 0, making its research progress publicly observable.

Let α(N) denote the probability of patent approval given the rival’s research progress

N . It is natural to assume that α(0) ≥ α(1): the patent is more likely to be granted when

there is no appeal. Here, α(0) denotes the patentability of the new technology: (i) it is

non-patentable if α(0) = 0; (ii) it is patentable if α(0) = 1. We define β := 1 − α(1) as the

probability that an appeal is successful, which can be interpreted as the level of prior-use

defense. For example, when α(0) = α(1) = 1, it corresponds to a pure first-to-file patent

system.

Once the patent is approved, the holder can license the technology to its rival using a

take-it-or-leave-it bargaining process, i.e., the patent holder has the full bargaining power

in negotiations.6 Specifically, the rival firm pays a license fee l to the patent holder in
5For simplicity, we assume firms must apply immediately after discovery.
6An equivalent interpretation is as follows. Suppose Firm i patents the new technology, thereby the

technology is disclosed. Firm j may then infringe on the patent by using Firm i’s technology to develop the
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exchange for access to the technology, thus, both firms can develop the product with the

new technology.

Parametric Assumptions We impose the following two parametric assumptions for the

remainder of the paper:

1

µ
+

1

λH
<

1

λL
& Π− c

λL
> 0. (2.1)

The first inequality implies that the new technology path is faster on average than the old

one: discovering the new technology takes expected time 1/µ, followed by development time

1/λH , while developing with the old technology alone takes 1/λL. The second inequality

ensures that using the old technology is profitable, allowing us to abstract from firms’ exit

decisions. Without this condition, firms would never allocate resources to development using

the old technology.

First-Best Outcome Consider a social planner who aims to maximize the firms’ joint

expected profit. The planner controls firms’ resource allocations, observes their research

progress, and makes the patent and license decisions—including the patentability of the

technology. If a firm discovers the new technology, it is socially optimal to license it to the

other. When neither had made a discovery, (2.1) implies that it is socially efficient for both

to continue researching. Therefore, the first-best outcome is to allocate both firms’ resources

to research until a discovery is made, after which the discovering firm patents and licenses

the technology for joint development.

3 Public Research Progress

In this section, we assume that firms’ research progress is public information. Thus, firms

can condition their allocations not only on their own research progress but also on that

of the competitor. Formally, at any time t, the set of firms that have discovered the new

product. In that case, Firm i can sue for patent infringement, and the court would order Firm j to pay
Firm i an amount equivalent to what Firm i would have received if it had full bargaining power and had
negotiated a license with Firm j.
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technology, {i | N i
t = 1}, is common knowledge. We represent this as a state variable, ω,

which belongs to the state space Ω := {{A,B}, {A}, {B}, ∅}.

Fix parameters λH and λL, and define

λ⋆(µ) := µ · λH ·
(

1

λL
− 1

µ
− 1

λH

)
. (3.1)

Under our parametric assumptions, the function λ⋆(µ) takes positive values and is strictly

increasing. It captures the relative attractiveness of pursuing research to acquire the new

technology, compared to direct development with the old technology. In Online Appendix

OA.1, we provide an interpretation of λ⋆(µ) as the threshold that governs optimal allocation

in a setting where a single firm faces a constant exogenous rate of termination.

This threshold turns out to be central for characterizing equilibrium behavior of the firms

in the innovation race, both when the new technology is patentable or not.

3.1 Non-Patentable Technology

When the new technology is not patentable, we can assume that firms do not apply for

patents without loss of generality. Thus, the only way for firms to access the new technology

is through independent research. We focus our analysis on how firms decide to allocate

their resources to research or development with the old technology. In particular, given the

stationarity of the problem, we consider Markov strategies, where a firm’s allocation depends

only on the state variable ω. Firm i’s Markov strategy is given by si : Ω → [0, 1], specifying

the fraction of resources allocated to research for each state. A pair of strategies (sA, sB)

constitutes a Markov perfect equilibrium (MPE) if each firm’s Markov strategy is the best

response to the opponent’s strategy. Next, we introduce three relevant Markov strategies.

Definition 1. (a) The research strategy siR for Firm i fully allocates resources to research

regardless of the opponent’s progress (siR := 1{i/∈ω}).7

(b) The fall-back strategy siF fully allocates resources to research if neither firm has the

new technology. If one of the firms has obtained the new technology, it fully allocates
7The function 1X is an indicator function: 1X(ω) = 1 if ω ∈ X and 1X(ω) = 0 if ω /∈ X.
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λ⋆ = 0

λ⋆ = λL

λ⋆ = λH

λL/λH

λL/µ

Figure 3: Markov Perfect Equilibrium in the Public Research Progress Setting

resources to development (siF := 1{ω=∅}).

(c) The direct-development strategy siD fully allocates the resources to development regard-

less of the state (siD := 0).

The following proposition shows that when the new technology is not patentable, there

exists a unique MPE in which firms adopt one of the relevant Markov strategies defined

above.

Proposition 1. Suppose that firms’ research progress is public information and the new

technology is not patentable. Then, the Markov perfect equilibrium is uniquely characterized

as follows:

(a) if λ⋆(µ) > λH , both firms play their respective research strategies (sAR, s
B
R);

(b) if λ⋆(µ) ∈ (λL, λH), both firms play the fall-back strategies (sAF , s
B
F );

(c) if λ⋆(µ) < λL, both firms play the direct-development strategies (sAD, s
B
D).

The relevant parametric regions from the proposition above are illustrated in Figure

3. In this figure, the vertical axis represents the relatively difficulty of discovering the new

technology, while the horizontal axis captures how efficient the new technology is compared to

the old one. The boundaries between the different regions is determined by the combination

for which λ⋆(µ) equal to 0, λL, and λH .
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This result is intuitive: when the research rate is fast, firms focus exclusively on research;

and when it is slow, they concentrate entirely on development using the old technology. In

both cases, they disregard information about competitors’ research progress. However, when

the research rate falls within an intermediate range, firms adopt the fall-back strategy, and

their allocation decisions depend on information about competitors’ research progress.

3.2 Patentable Technology

When the new technology is patentable, firms’ patenting decisions, in addition to their

resource allocations, must be considered. The next lemma shows that firms always patent

the new technology upon discovery.

Lemma 1. Suppose that firms’ research progress is public information and that the new

technology is patentable. In any subgame perfect Nash Equilibrium (SPNE), the first firm to

discover the new technology applies for a patent.

Having established firms’ patenting behavior, we now examine their licensing decisions

and the optimal fee set by the patent holder. Consider the subgame in which Firm i holds

the patent. If the licensing offer is accepted, both firms develop using the new technology,

each receiving the continuation payoff V11 := λHΠ−c
2λH

. If the offer is rejected, Firm i uses

the new technology while Firm j develops with the old one, yielding continuation payoffs

V10 := λHΠ−c
λH+λL

and V01 := λLΠ−c
λH+λL

, respectively.8 Firm j accepts the licensing fee offer l iff

V11 − l ≥ V01. The next lemma characterizes the optimal licensing fee offered by the patent

holder.

Lemma 2. In any subgame perfect Nash equilibrium (SPNE), when a firm obtains the patent

for the new technology, it offers a licensing fee

l∗ := V11 − V01 =
λH − λL
λH + λL

· λHΠ+ c

2λH
(3.2)

to its competitor, and the competitor accepts the offer.
8Firm j does not exit the market since V01 > 0 under the parametric assumption.
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Intuitively, the total surplus of the firms is maximized when the patenting firm licenses

the technology. This is because the expected development time is shorter when both firms

develop using the new technology, compared to when one firm uses the new technology and

the other uses the old one. Therefore, there exists a non-empty set of fees that the patent

holder is willing to offer and the licensee is willing to accept, and a licensing agreement

is achieved á la Coase (1960). The license fee l∗ is simply the fee that leaves the licensee

indifferent between accepting and rejecting the offer.

As we showed in Lemma 1, when the new technology is patentable, firms apply for

patents as soon as they discover the new technology. Therefore, when the new technology

is patentable, the patent is granted with probability one on the equilibrium path. Given

this and the optimal licensing fee obtained in Lemma 2, we can determine the continuation

payoffs of each firm after the discovery of the new technology. Using these continuation

payoffs, we can analyze the equilibrium resource allocations prior to the new technology

discovery. The following proposition identifies the condition that the first-best outcome can

be implemented. We present the full equilibrium characterization in Appendix B.2.3.

Proposition 2. Suppose that firms’ research progress is public information and that the new

technology is patentable. There exists a threshold π̃1 > 1 such that the first-best outcome can

be implemented in the equilibrium if and only if (i) λ⋆(µ) > λL; or (ii) λL > λ⋆(µ) >
λHλL

2λH+λL

and π̃1 > π := λLΠ/c.

Intuitively, the possibility of patenting increases incentives for research. Recall that when

λ⋆(µ) > λL, firms engage in research even when the new technology is non-patentable. Thus,

firms will continue researching in this parametric region when patenting the new technology

becomes possible (Part (i)).

When λ⋆(µ) < λL, recall that if the new technology is non-patentable, both firms develop

the product using the old technology. Even if the new technology is patentable, the incentive

to develop the product directly using the old technology remains strong—particularly when

the stake of winning the race, π, is sufficiently high. Therefore, the first-best outcome can

be achieved when π is relatively small (Part (ii)). It is important to note that since patents

are never challenged on the equilibrium path, the equilibrium research allocations remain
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independent of the level of prior-use defense level, β = 1− α(1).

4 Private Research Progress

Having characterized the equilibrium behavior of firms when research progress is public, we

now turn to the main specification of our model, in which firms do not observe their oppo-

nents’ research progress. Unlike in the public research progress case, the fall-back strategy

is no longer feasible—firms cannot adjust their R&D strategies based on their opponents’

progress.

4.1 Non-Patentable Technology

When the technology is non-patentable, firms do not apply for patents, and the only way to

access the new technology is through independent discovery. As before, a firm that possesses

the new technology will use it to develop at rate λH . A firm without the new technology, on

the other hand, can allocate resources between development and research. For this firm, the

only relevant history is the calendar time, as the rival’s progress is unobservable. Thus, its

strategy is to choose an allocation policy, a right-continuous function σ : R+ → [0, 1] that

represents the share of resources allocated to research at a given time, conditional on not

having obtained the new technology so far. We denote S as the set of allocation policies.

Belief Evolution Let pσ be the probability that a firm following allocation policy σ

obtains the new technology by time t, conditional on not having developed the product yet.9

In other words, when Firm A follows policy σ, Firm B’s belief that Firm A obtained the

new technology by time t is pσ(t). The following proposition characterizes, the evolution of

pσ over time for any policy σ ∈ S.

Lemma 3. For any allocation policy σ ∈ S, the conditional probability pσ(t) satisfies

the initial condition pσ(0) = 0 and evolves according to the differential equation ṗσ(t) =

9See Appendix C.1 for the formal definition of pσ.
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BE(pσ(t),σ(t)), where BE : [0, 1]× [0, 1] → R is given by:

BE(p, σ) := µ · σ · (1− p)︸ ︷︷ ︸
DE

− (λH − (1− σ) · λL) · p · (1− p)︸ ︷︷ ︸
SRE

. (4.1)

The belief evolution function BE highlights two distinct effects of resource allocation σ(t)

on the evolution of pσ, captured by the two terms in (4.1). First, if the firm has not yet

discovered the new technology—occurring with probability (1 − pσ(t))—it is discovered at

rate µ ·σ(t). We dub this effect the duration effect (DE). Second, the absence of a successful

development indicates that it is less likely that the firm has obtained the new technology.

This is captured in the second term, referred to as the still-in-the-race effect (SRE).10 The

SRE is proportional to λH − (1 − σ(t))λL, the difference in the rate of development of the

firm with and without the new technology.

Based on this belief evolution, the following lemma derives the probability that a firm

has discovered the new technology by time t, given that it has researched up to t and no

product development has occurred by then. Since allocation beyond t does not affect this

conditional probability, it remains the same as under the research policy (σ = 1).

Lemma 4. Suppose that a firm follows an allocation policy σ, with σ(s) = 1 for s ∈ [0, t).

Then, the conditional probability pσ(t) of having access to the new technology by time t given

that the race is ongoing is given as follows:

pσ(t) = p1(t) :=
1
λH

(
e−µt − e−λH t

)
1
µ
e−µt − 1

λH
e−λH t

.11 (4.2)

Moreover, p1(t) is increasing in t, with limt→∞ p1(t) = min{1, µ/λH}.

The last part of this lemma highlights that when the development rate under the new

technology (λH) exceeds the research rate (µ), the conditional probability under the research

policy converges to µ/λH , which remains below 1. This result stems from the SRE: since

the development rate under the new technology is rapid, the firm’s continued presence in
10Similar belief updating occurs in strategic experimentation literature, e.g., Keller et al. (2005); Bonatti

and Hörner (2011), where agents form beliefs about whether projects are good or bad. However, in this
paper, firms form beliefs about the research progress of their rivals.

11If µ = λH , p1(t) = µt/(1 + µt). All the results follow through with this case.
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the race suggests a lower likelihood of possessing the new technology, ultimately restricting

the conditional probability exceeding a certain threshold.

Expected Payoffs and Equilibrium Concept To define expected payoffs of firms, we

begin by introducing a function that specifies the rate of development under a given allocation

policy.

Definition 2. Given a policy σ ∈ S, the associated development rate function hσ is defined

as hσ(t) = DR(pσ(t),σ(t)) where DR : [0, 1]× [0, 1] → R is given by:

DR(p, σ) := p · λH + (1− p) · (1− σ) · λL. (4.3)

When a firm employs a policy σ, the first term of (4.3) captures that, if the firm has

discovered the new technology by time t—which occurs with probability pσ(t)—it develops

at rate λH using the new technology. If the firm has not discovered the new technology by

time t, occurring with probability (1− p(t)), it develops at rate (1− σ(t))λL.

Given a firm and its rival’s allocation policies σ and σ̂, we can express the firm’s expected

payoff in terms of the associated development rates, hσ and hσ̂, as follows:

U(σ, σ̂) =
∫ ∞

0

e−
∫ t
0 {hσ(s)+hσ̂(s)} ds · (hσ(t) · Π− c) dt. (4.4)

Intuitively, the exponential term captures the probability that no firm has developed the

product, i.e. the probability that the race is still ongoing by time t. In that case, the firm

captures an expected flow payoff equal to hσ(t) ·Π, due to the potential development of the

product, while incurring the flow cost c. By integrating, we obtain the expected payoffs of

the firms.

Building on the literature on dynamic games with unobservable actions (e.g., Bonatti

and Hörner, 2011), we focus on symmetric Nash equilibria. Specifically, we characterize the

one with the shorted expected duration.

Definition 3. An allocation policy σ is called the shortest expected duration symmetric Nash

equilibrium (SDSNE) policy if it satisfies the following two conditions: (i) (σ,σ) constitutes
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a Nash equilibrium; (ii) it minimizes the expected duration among all symmetric Nash

equilibria.

Equilibrium Characterization We begin by defining a pair consisting of a probability

and a resource allocation that can emerge in the SDSNE policy.

Definition 4. A steady state is a pair (p⋆, σ⋆) ∈ (0, 1)2 satisfying (i) DR(p⋆, σ⋆) = λ⋆(µ);

and (ii) BE(p⋆, σ⋆) = 0.

In a steady state, the belief is stationary (BE(p⋆, σ⋆) = 0) and the development rate is

λ⋆(µ), implying that firms are indifferent between researching and developing with the old

technology (Proposition OA.1.1 (c)). Thus, once both firms reach the steady state belief

p⋆, allocating σ⋆ onward can be part of a Nash equilibrium policy. The following lemma

provides a condition under which the steady state exists.

Lemma 5. There exists a steady state if and only if λ⋆(µ) ∈ (λL,min{λH , µ}). The steady

state is unique.

We consider a policy where a firm researches until its conditional probability reaches the

steady-state belief p⋆, and then begins using the steady-state allocation σ⋆ thereafter. We

can identify a unique time T⋆ such that p1(T⋆) = p⋆ and formally define this policy.

Definition 5. The stationary fall-back policy, σSF , is defined as follows: (i) σSF (t) = 1 if

t < T⋆; (ii) σSF (t) = σ⋆ if t ≥ T⋆; and (iii) pσSF (t) = p⋆ for all t ≥ T⋆.

Now we provide the characterization of the SDSNE policy for each parametric region.

Proposition 3. When the new technology is non patentable, the SDSNE policy is charac-

terized as follows:

(a) if λ⋆(µ) < λL, firms employ the direct-development policy, σ = 0;

(b) if λ⋆(µ) > min{λH , µ}, firms employ the research policy, σ = 1;

(c) if λ⋆(µ) ∈ (λL,min{λH , µ}), firms employ the stationary fall-back policy, σ = σSF .
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Figure 4: SDSNE policy in the Private Research Progress Setting

When the parameters satisfy λ⋆(µ) > λH or λ⋆(µ) < λL, Proposition 1 (a) and 1 (c)

establish that firms do not adjust their allocation based on the opponent’s progress, even

when this information is publicly available. Thus, in these parametric regions, equilibrium

allocations remain unchanged regardless of whether research progress is public or private.

The more interesting case arises when λ⋆(µ) ∈ (λL, λH). As shown in Proposition 1 (b),

under these parameters, firms employ the fall-back strategy in the public research progress

case. However, this strategy is no longer feasible when research progress is private. Despite

this limitation, the optimality of the fall-back strategy in the public case suggests that if a

firm believes that its rival likely possesses the new technology, it is inclined to allocate more

resources toward direct development with the old technology.

Based on these insights, our main result shows that when the steady state exists (λ⋆(µ) ∈

(λL,min{µ, λH})), both firms research until their beliefs reach the steady state probability

p⋆. Then, both firms implement the steady state allocation σ⋆ from that point on, making

the belief stationary at p⋆. Last, if µ < λ⋆(µ) < λH , the still-in-the-race effect prevents the

belief from exceeding a certain level.12 This keeps the development rate lower than λ⋆(µ),

thus, by Proposition OA.1.1, it is optimal for both firms to conduct research indefinitely.
12Specifically, it cannot exceed µ/λH . See Lemma 4.
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Figure 5: Expected Durations across Settings

Expected Durations across Settings Now that we have characterized the equilibrium

allocations, we can compare how expected development times differ across settings.13 Fig-

ure 5 illustrates how expected development time varies with the research rate µ under the

first-best case and the cases of public and private research progress with non-patentable

technology. In the first-best case, a planner allocates all the resources to research and shares

the technology discovery between firms, yielding the shortest expected duration, 1
2µ

+ 1
2λH

.

When the new technology is non-patentable, even with public research progress, firms can-

not benefit from each other’s progress, resulting in longer development times. The private

information about research progress further prolongs development when µ is intermediate

(λL < λ⋆(µ) < λH), as uncertainty about rivals’ progress leads firms to adopt stationary

fall-back or research policies rather than the fall-back policy that would be optimal under

public research progress.

4.2 Patentable Technology

Now assume that the new technology is patentable. We identify parametric conditions under

which each of the following equilibria arises: (i) the efficient patent equilibrium—firms engage

in research, upon discovery, patent and license the new technology, thereby achieving the

first-best outcome; (ii) the concealment equilibrium—firms choose not patent, resulting in
13Since there is no discounting and the reward goes to one of the firms, a lower expected development time

implies a higher expected total surplus.
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the same outcome as in the case of non-patentable technology.

4.2.1 First-Best Implementation

Recall that the first-best outcome occurs when both firms engage in research and, upon

discovery, share the new technology with the other firm through patenting and licensing. If

the first-best outcome is implemented, then on the equilibrium path, both firms behave as

if research progress is public information. Therefore, the condition stated in Proposition 2

is necessary for the existence of an efficient patent equilibrium. In addition to this, another

condition is required to ensure that a firm has the incentive to discloses the discovery of the

new technology. The following lemma characterizes this condition.

Lemma 6. Suppose that firms’ research progress is private information, and Firm j’s re-

source allocation strategy is to do research indefinitely (σt = 1 for all t ≥ 0) and apply for a

patent once the new technology is discovered. When Firm i discovers the new technology, it

applies for a patent if and only if

l∗

V11
>

λH
λH + µ(2− β)

. (4.5)

This result is intuitive in that a firm is willing to apply for a patent if and only if the

licensing fee l∗ is attractive enough relative to the firm’s expected payoff after licensing V11.

Observe that, as β increases, (4.5) becomes more difficult to hold. This result aligns with

intuition: as the prior-use defense level increases, firms are less inclined to apply for patents.

Also note that from (3.2) and π = λLΠ/c, we have

l∗

V11
=
λH − λL
λH + λL

· λHΠ+ c

λHΠ− c
=
λH − λL
λH + λL

· λHπ + λL
λHπ − λL

.

Therefore, the left hand side of (4.5) is decreasing in π, i.e., as π increases, (4.5) becomes

more difficult to hold. Intuitively, since a part of the licensing fee comes from the saving of

the cost, it does not increase proportionally with V11. Equipped with this result, we can pin

down the parametric conditions under which the efficient patent equilibrium exists.

19



Proposition 4. Suppose that firms’ research progress is private information. The efficient

patent equilibrium exists if and only if the condition in Proposition 2 and one of the following

conditions hold: (i) β ≤ β̂ := 2λ⋆

λH+λ⋆(µ)
; or (ii) β > β̂ and

1 < π < π̂(β) := 1 +
λL + λH
λH

· 2− β

β − β̂
. (4.6)

Note that when λ⋆(µ) > λH , the efficient patent equilibrium exists, since β̂ > 1. In

this case, firms conduct research regardless of their rivals’ progress. Therefore, when a firm

discovers the new technology, there is no informational advantage to concealing it. Instead,

firms can benefit from licensing the new technology to the rival firms, allowing the efficient

patent equilibrium to be attained. On the other hand, when λ⋆(µ) < λH , it is possible that

the efficient patent equilibrium does not exist. To illustrate this, consider a scenario where

Firm A discovers the new technology. If Firm A patents and licenses the new technology,

the licensing fee is determined based on the assumption that, if the offer is rejected, Firm

B will develop with the old technology. Recall that, in the case of λ⋆(µ) < λH , developing

with the old technology is the best response for Firm B when it knows that the rival has the

new technology (Proposition OA.1.1). Therefore, by applying for a patent, Firm A provides

an opportunity for Firm B to exercise its best response. In contrast, if Firm A keeps the

discovery secret, it may induce Firm B to make suboptimal choices in R&D strategies, e.g.,

Firm B may squander its time in conducting research for the new technology, which Firm A

already possesses. This trade-off creates the possibility that the efficient patent equilibrium

does not exist.

4.2.2 Concealment Equilibrium

Now we consider another extreme equilibrium candidate where both firms do not apply for

patents. On the equilibrium path of this concealment equilibrium, firms do not observe

rivals’ research progress. Therefore, the equilibrium outcome corresponds to that under the

private research progress case with the non-patentable technology.

To simplify the discussion, we focus on the parametric region where λH > λ⋆(µ) > µ.

Recall that in this region, both firms employ the fall-back strategy under the public informa-
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tion setting (Proposition 1 (b)), whereas they conduct research under the private information

setting (Proposition 3 (b)). The following proposition shows that the concealment equilib-

rium exists when both the prior-use defense level and the stake of winning the race are high

enough.

Proposition 5. Suppose that firms’ research progress is private information and λH >

λ⋆(µ) > µ. There exists β̃ > β̂ and π̃(β) ≥ π̂(β) such that the concealment equilibrium exists

if and only if β > β̃ and π > π̃(β).

Intuitively, a substantial stake of winning the race and strong prior-use defense increase

firms’ incentives to conceal their discovery of the new technology. Instead of receiving the

licensing fee after patenting—which involves another round of competition to develop the

product with the new technology—firms would rather let their rivals squander time research-

ing for the technology they already possess. Specifically, the licensing fee does not fully

internalize the decreased chance of winning the race. This is because once Firm i applies for

a patent, Firm j adjusts the R&D strategy based on the information that Firm i possesses

the new technology, implying that Firm j’s outside option is changed after the disclosure.

This concealment incentive slows down the social speed of development in two ways: (i)

the discovery of the new technology is not shared with another firm, as described by the gap

between the black and the blue curves in Figure 5; (ii) due to the lack of information, firms

cannot appropriately adjust the R&D strategies, as described by the gap between the blue

and the red dotted curves in Figure 5.

Last, note that the parametric regions of (β, π) in Proposition 4 and 5 do not overlap;

that is, there exists an intermediate region where neither efficient patent equilibrium nor

concealment equilibrium exists. In this region, as in Chatterjee et al. (2023), firms would

engage in partial disclosure—applying for patents at some rate.

21



5 Discussion

5.1 Empirical Implications

Our results in Sections 4.2 yield empirical implications for how the stakes of winning the race

(π) and the strength of prior-use defense protections (β) affect the social speed of innovation.

With respect to π, the model predicts a non-monotonic relationship with innovation

speed when β is sufficiently high. When π is too low to violate the parametric assumption

in (2.1), firms opt out of R&D races altogether, resulting in no innovation. As π rises to an

intermediate range, firms are incentivized to engage in R&D and to share interim discoveries,

which enhances the overall rate of innovation. However, when π becomes excessively high,

the incentive to preserve competitive advantage through concealment dominates, reducing

knowledge spillovers and thereby slowing innovation.

Regarding β, a stronger prior-use defense can discourage patenting and public disclosure.

This behavior fosters concealment and impedes the diffusion of technological advances, ulti-

mately slowing cumulative innovation. Notably, the strength and practical enforceability of

prior-use defenses can vary across industries, depending on how easily firms can demonstrate

independent development. For example, in industries such as manufacturing or hardware,

it is often easier to document prior use due to physical prototypes and production records,

whereas in fast-evolving sectors like software or biotechnology, prior-use claims can be more

ambiguous. This variation opens a path for empirical investigation by comparing innovation

patterns across sectors with differing de facto levels of prior-use protection.

5.2 Policy Implications

While significant rewards are essential to incentivize R&D, excessively high stakes in the

product market may prompt firms to conceal technological breakthroughs to preserve their

competitive advantage. Such concealment reduces opportunities for knowledge spillovers and

can decelerate the overall pace of innovation. Thus, policies affecting monopoly power—such

as competition regulation or exclusivity periods—must carefully weigh the trade-off between

stimulating innovation and promoting knowledge diffusion.
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Similarly, prior-use defenses—provisions that allow firms to continue using a technology

they developed independently, even if subsequently patented by another—can protect early

innovators but may also reduce the incentive to patent. This weakens public disclosure

mechanisms and risks duplicative R&D on already-discovered technologies. This tension

echoes the rationale for the U.S. patent system’s shift from a first-to-invent to a first-to-file

regime, aimed at reducing uncertainty and improving the efficiency of information disclosure.

Overall, our results highlight the complex trade-offs that define innovation policy. Policies

designed to encourage innovation in one dimension may inadvertently hinder it in another.

Policymakers should carefully weigh these tensions when designing institutions to foster

long-term technological progress.

5.3 Related Literature

Patent vs. Secrecy We contribute to the literature on the choice between patenting

and secrecy by introducing a novel incentive for concealment: preventing a rival’s strategic

response.14

Much of the earlier literature emphasizes the limitations of patent protection. For ex-

ample, the seminal article by Horstmann et al. (1985) argues that “patent coverage may

not exclude profitable imitation,” suggesting that firms may prefer secrecy to avoid being

copied.15 Another concern is that patent protection is time-limited. For instance, Denicolò

and Franzoni (2004) model a setting where a patent grants temporary monopoly power,

while secrecy offers potentially indefinite monopoly power but may be compromised through

leaks or duplication.

In contrast, our analysis abstracts from these limitations and focuses on the strategic

benefit of concealment in shaping rivals’ outside options—depending on the information about

a firm’s technology level, a rival’s strategy may shift, altering its outside option accordingly.
14For a comprehensive review of the literature on patents vs. secrecy, see the excellent survey by Hall

et al. (2014).
15Many subsequent papers study the imitation threat and patent infringement, e.g., Gallini (1992); Takalo

(1998); Anton and Yao (2004); Kultti et al. (2007); Kwon (2012); Zhang (2012); Krasteva (2014); Krasteva
et al. (2020).
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Information Disclosure in Races This novel trade-off between patenting and conceal-

ing naturally relates to recent work on information disclosure in innovation races, such as

Hopenhayn and Squintani (2016); Bobtcheff et al. (2017); Curello (2023).16

In these models, innovation value increases over time, and firms face a trade-off between

early disclosure to secure priority and waiting to enhance value. In contrast, our model

assumes a fixed innovation value, and disclosure decisions are motivated by strategic inter-

actions around rival’s R&D activity.

A particularly relevant study is Chatterjee et al. (2023), where they also examine disclo-

sure in a race with an intermediate breakthrough. Their model assumes an exogenous payoff

from disclosing the intermediate discovery, and that competing firms can copy the discov-

ery once it is disclosed. In contrast, our model incorporates licensing procedures along with

patenting decisions, which endogenizes the payoff from disclosure based on the race structure

and patent system. As in our paper, they find that high rewards of the final discovery can

lead firms to withhold intermediate findings, resulting in inefficiency.

Multiple Avenues towards Innovation There is growing interest in models where firms

can pursue multiple innovation paths. Das and Klein (2024) and Akcigit and Liu (2016)

study patent races involving a safe and a risky method, differing in arrival intensity or payoff

uncertainty. In our framework, firms face no uncertainty about feasibility of each path but

are uncertain about rivals’ progress.

Bryan and Lemus (2017) offer a related framework about direction of innovation using

acyclic graph. They assume that whenever a new invention is discovered, the first firm to

invent it receives the prize, and the access to the invention is given to all the other firms. In

contrast, in our model allows interim discoveries to remain private.

Multi-stage Innovation Multi-stage innovation has been extensively studied, e.g., Scotch-

mer and Green (1990); Denicolò (2000); Green and Taylor (2016); Song and Zhao (2021);

Kocourek and Kováč (2023). Following these works, we model innovation as a sequence of

Poisson arrivals. For example, Kocourek and Kováč (2023) study a two-stage patent race
16See also Lichtman et al. (2000); Baker and Mezzetti (2005); Gill (2008); Baker et al. (2011); Ponce

(2011), reviewed in Section 3.3 of Hall et al. (2014).
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in which firms can choose the intensity of each arrivals under private and public informa-

tion about the intermediate breakthrough. Our model differs by incorporating technology

spillover, and allowing firms to pursue a direct, slower path that requires only one break-

through.

This setup also connects to Carnehl and Schneider (2023) and Kim (2022), where players

can choose between sequential and direct paths. Unlike their models, which feature a single

decision-maker or a principal-agent structure, our model involves strategic interactions be-

tween firms in the race. Moreover, we do not assume exogenous or endogenous deadlines;

rather, the competitive race itself can induce firms to adopt the old technology, effectively

choosing the direct path.

Interim Discoveries Our focus on interim discoveries links this work to the literature

on licensing intermediate technologies, e.g., Bhattacharya et al. (1992); d’Aspremont et al.

(2000); Bhattacharya and Guriev (2006); Spiegel (2008). These studies typically assume the

holder of the superior technology is known. By contrast, our model incorporates endogenous

licensing choices, including the decision not to license, shaped by strategic considerations.

5.4 Future Research

There are many avenues open for further research. For example, we assume that there

are exogenously given two paths towards innovation, and one of the paths requires two

breakthroughs. However, in practice, there are numerous ways to innovate, and it often

requires more than two breakthroughs. We also assume that a firm’s R&D resources are

fixed over time, but we could also allow firms to endogenously choose how much effort to put

into each point in time. Finally, we assume the contest structure is given by the winner-takes-

all competition, but we might consider a contest design problem. We leave these intriguing

questions and others for future work.
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Appendix

A Preliminaries: Optimal Control Theory

A.1 Useful Observations

Let τ be a random variable on R+. Suppose that it has a continuous and differentiable

cumulative distribution function F : R+ → [0, 1]. Let S(t) denote the survival function of τ ,

i.e., S(t) = 1− F (t). If limt→∞ t · S(t) = 0, the following equation holds:

E[τ ] =
∫ ∞

0

t · F ′(t)dt = −t · S(t)
∣∣∣∣∞
0

+

∫ ∞

0

S(t)dt =

∫ ∞

0

S(t)dt. (A.1)

Let h be a development rate function of τ : h(t) = −S ′(t)/S(t).17 Then, under the assumption

that F (0) = 0, we can derive that S(t) = e−
∫ t
0 h(s)ds. Then, (A.1) can be rewritten as follows:

E[τ ] =
∫ ∞

0

e−
∫ t
0 h(s)dsdt. (A.2)

Consider another random variable τ̂ independent to τ . Let Ŝ and ĥ be its survival and

development rate functions. Observe that

Pr[τ < τ̂ ] =

∫ ∞

0

Ŝ(t) dF (t) = −
∫ ∞

0

S ′(t) · Ŝ(t) dt. (A.3)

Then, (A.3) can be rewritten as follows:

Pr[τ < τ̂ ] =

∫ ∞

0

h(t) · S(t) · Ŝ(t) dt =
∫ ∞

0

h(t) · e−
∫ t
0 (h(s)+ĥ(s))ds dt. (A.4)

Now consider another random variable which is a minimum of τ and τ̂ , denoted by (τ∧τ̂).

Then, the survival function of (τ ∧ τ̂) is S(t) · Ŝ(t), and the development function of (τ ∧ τ̂)
17In the literature, the function h(t) is often referred to as a ‘hazard rate’ function. The term hazard rate

originated from the tradition of describing arrivals as negative events such as failures. In our context, where
we are analyzing the timing of product developments, we use the term ‘development rate’ instead of hazard
rate.
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is h(t) + ĥ(t). By applying (A.2), when limt→∞ t · S(t) · Ŝ(t) = 0, we have

E[τ ∧ τ̂ ] =
∫ ∞

0

e−
∫ t
0 (h(s)+ĥ(s))ds dt. (A.5)

A.2 Formal Definitions of Arrival Times

Given an allocation policy σ : R+ → [0, 1], we define the following random variables:

1. τL: the arrival time of successful development with the old technology;

2. τR: the arrival time of the new technology discovery.

Define Σt :=
∫ t

0
σ(s)ds. Then, the survival functions of τL and τR are given as follows: for

all t ≥ 0,

SL
σ(t) = e−λL(t−Σt) and SR

σ (t) = e−µΣt . (A.6)

In addition, the development rate functions can be derived as follows:

hLσ(t) = λL(1− σ(t)) and hRσ(t) = µσ(t). (A.7)

Intuitively, the product is developed with the old technology at the rate hLσ(t) = λL(1−σ(t))

and the new technology is discovered at the rate hRσ(t) = µσ(t).

B Proofs for the Public Research Progress

B.1 Non-Patentable Technology

In this section, we prove Proposition 1. We use a backward induction to characterize MPE.

B.1.1 Best Responses upon New Technology Discovery

We begin by considering the cases where at least one of the firms has discovered the new

technology.

When both firms have discovered the new technology (ω = {i, j}), they will develop with

the new technology and their expected payoffs are U i
{i,j} = U j

{i,j} = V11 :=
λHΠ−c
2λH

.
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Next, suppose that only one of the firms, say Firm i, has discovered the new technology,

i.e., ω = {i}. In this case, Firm i develops the product at rate λH with the new technology.

Then, we can derive the continuation values by applying Proposition OA.1.1:

(i) if λ⋆ > λH , Firm j researches:

U i
{i} = U j

{j} =
λHΠ+ µV11 − c

µ+ λH
=
µ+ 2λH
µ+ λH

V11, U i
{j} = U j

{i} =
µV11 − c

µ+ λH
, (B.1)

(ii) if λ⋆ < λH , Firm j develops with the old technology:

U i
{i} = U j

{j} = VH :=
λHΠ− c

λL + λH
, U i

{j} = U j
{i} = VL :=

λLΠ− c

λL + λH
. (B.2)

B.1.2 Best Responses under no New Technology Discovery

Now, we consider the case where neither firm has discovered the new technology, i.e., ω = ∅.

To allow for flexibility in various extensions, we formulate the problem in a general way by

treating the continuation payoffs U i
{i} and U i

{j} as exogenous values.

We start by expressing Firm i’s expected payoff when it follows σ and Firm j follows σ

and σ̂, which are not necessarily Markov strategies.

Lemma B.1. Suppose that Firm i and j employ allocation policies σ and σ̂ at the state ∅.

Let U i
{i} and U i

{j} be Firm i’s continuation payoffs at the states {i} and {j}. Then, Firm i’s

expected payoff, U0(σ, σ̂), is given as follows:

∫ ∞

0

(
λL(1− σ(t)) · Π+ µσ(t) · U i

{i} + µσ̂(t) · U i
{j} − c

)
· e−λL(2t−Σt−Σ̂t)−µ(Σt+Σ̂t) dt, (B.3)

where Σt =
∫ t

0
σ(s)ds and Σ̂t =

∫ t

0
σ̂(s)ds.

Proof. When any of the arrival times τL, τR, τ̂L and τ̂R occurs, the Firm i’s payoff is realized.

Furthermore, it incurs a flow cost c until one of these arrival times takes place. Thus, Firm
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i’s expected payoff can be written as follows:

U0(σ, σ̂) =Pr[τL < (τR ∧ τ̂L ∧ τ̂R)] · Π+ Pr[τR < (τL ∧ τ̂L ∧ τ̂R)] · U i
{i}

+ Pr[τ̂R < (τL ∧ τR ∧ τ̂L)] · U i
{j} − E[(τL ∧ τR ∧ τ̂L ∧ τ̂R)] · c.

(B.4)

Note that the survival function of (τR ∧ τ̂L ∧ τ̂R) is e−λL(t−Σ̂t)−µ(Σt+Σ̂t). By using (A.4)

and (A.7), we have

Pr[τL < (τR ∧ τ̂L ∧ τ̂R)] =
∫ ∞

0

λL(1− σ(t)) · e−λL(2t−Σt−Σ̂t)−µ(Σt+Σ̂t) dt.

Likewise, we can derive that

Pr[τR < (τL ∧ τ̂L ∧ τ̂R)] =
∫ ∞

0

µ σ(t) · e−λL(2t−Σt−Σ̂t)−µ(Σt+Σ̂t) dt,

Pr[τ̂R < (τ̂L ∧ τL ∧ τR)] =
∫ ∞

0

µ σ̂(t) · e−λL(2t−Σt−Σ̂t)−µ(Σt+Σ̂t) dt.

Next, observe that the survival function of (τL ∧ τR ∧ τ̂L ∧ τ̂R) is

e−λL(2t−Σt−Σ̂t)−µ(Σt+Σ̂t) = e−2λLt−(µ−λL)(Σt+Σ̂t).

Then, from µ ≥ λL and Σt + Σ̂t ≥ 0, we have limt→∞ t · e−λL(2t−Σt−Σ̂t)−µ(Σt+Σ̂t) = 0. By

applying (A.1), we have

E[(τL ∧ τR ∧ τ̂L ∧ τ̂R)] =
∫ ∞

0

e−λL(2t−Σt−Σ̂t)−µ(Σt+Σ̂t) dt.

By plugging the above equations into (B.4), we obtain (B.3).

Next, consider the case where Firm i and j play Markov strategies, with s(∅) = x and

ŝ(∅) = y. Equivalently, they adopt constant allocation policies σ and σ̂ where σ(t) = x and

σ̂(t) = y for all t ≥ 0. Firm i’s expected payoff in state ∅ is then given by:

u0(x, y) :=
xµU i

{i} + (1− x)λLΠ+ yµU i
{j} − c

xµ+ (1− x)λL + yµ+ (1− y)λL
. (B.5)
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The next lemma shows that it is without loss of generality to focus on deviations to Markov

strategies.

Lemma B.2. Suppose that (x0, y0) ∈ [0, 1]2 satisfies x0 ∈ argmaxx∈[0,1] u0(x, y0). Let σ∗, σ̂∗ :

R+ → [0, 1] be σ∗(t) = x0 and σ̂∗(t) = y0 for all t ≥ 0. Then, σ∗ is a best response to σ̂∗.

Proof of Lemma B.2. This can be proven by following the same steps of the proof of Lemma

OA.1.2 by setting rt denote SM
σ,σ̂∗(t) and using Lemma B.1.

Define ∆y := u0(1, y)− u0(0, y). With some algebra, we can derive that

∂u0
∂x

= C(x, y) · {λL ·∆0 · (1− y) + µ ·∆1 · y} , (B.6)

where

C(x, y) = 2(λL + µ)

{µx+ λL(1− x) + µy + λL(1− y)}2
> 0.

The following lemma characterizes the equilibrium allocations at state ∅ in any MPE.

Lemma B.3. The equilibrium allocations at state ∅ are characterized as follows:

(a) when ∆0,∆1 > 0, both firms do research, i.e., (sA(∅), sB(∅)) = (1, 1);

(b) when ∆0,∆1 < 0, both firms develop with the old technology, i.e., (sA(∅), sB(∅)) =

(0, 0).

Proof of Lemma B.3. (a) When ∆0,∆1 > 0, from (B.6), ∂u0

∂x
> 0 for all y ∈ [0, 1], i.e.,

x = 1 is optimal. Thus, both firms play s(∅) = 1 in any MPE.

(b) When ∆0,∆1 < 0, from (B.6), ∂u0

∂x
< 0 for all y ∈ [0, 1], i.e., x = 0 is optimal. Thus,

both firms play s(∅) = 0 in any MPE.

In scenarios where ∆0 and ∆1 share the same sign, the best response is independent of

the opponent’s resource allocation. Specifically, when both ∆0 and ∆1 are positive, it is

optimal to assign all resources to research. Conversely, when both ∆0 and ∆1 are negative,

it is optimal to develop with the old technology.
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B.1.3 MPE Characterization

Proof of Proposition 1. First, when λ⋆ > λH , by plugging (B.1) into (B.5) and the definition

of ∆y, we obtain the followings with some algebra:

∆0 =
λH · λ⋆ · (λLΠ+ c) + µ · (λ⋆ − λH) · c

2λH(λH + µ)(λL + µ)
, (B.7)

∆1 =
λL · {λH · λ⋆ · (µΠ+ c) + µ · (λ⋆ − λH) · c}

2µλH(λH + µ)(λL + µ)
. (B.8)

Then, we have that ∆0,∆1 > 0. By applying Lemma B.3 (a), both firms do research at

the state ∅. Then, when one of the firms, say Firm j, succeeds in research, by Proposition

OA.1.1.(a), Firm i will keep doing research. Therefore, the unique MPE is for firms to follow

the research strategy (Proposition 1 (a)).

Next, if λ⋆ < λH , by plugging (B.2) into (B.5) and the definition of ∆y, we obtain the

followings with some algebra:

∆0 =
(λLΠ+ c) · (λ⋆ − λL)

2(λL + µ)(λL + λH)
, (B.9)

∆1 =
(µΠ+ c) · λL · (λ⋆ − λL)

2µ(λL + µ)(λL + λH)
. (B.10)

When λ⋆ ∈ (λL, λH), (B.9) and (B.10) imply that ∆0 and ∆1 are positive. Thus, by

Lemma B.3 (a), both firms do research at the state ∅. Then, when one of the firms, say

Firm j, succeeds in research, by Proposition OA.1.1.(b), Firm i will switch to develop with

the old technology. Therefore, the unique MPE is for firms to follow the fall-back strategy

(Proposition 1 (b)).

Last, when λ⋆ < λL, we can see that ∆0 and ∆1 are negative. Then, by Lemma B.3 (b),

both firms develop with the old technology at the state ∅. Additionally, even if a firm happens

to succeed in research, the other firm will keep developing with the old technology due to

Proposition OA.1.1.(b). Thus, the unique MPE is for firms to employ the direct-development

strategy (Proposition 1 (c)).
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B.2 Patentable Technology

B.2.1 Proof of Lemma 1

Proof of Lemma 1. Suppose that Firm i has just discovered the new technology and Firm j

does not have the patent for the new technology. If Firm j already has the patent, Firm i

cannot apply for a patent in the first place.

First, consider the case where Firm j already has the new technology (not the patent).

If Firm i does not apply for a patent, both firms race toward development with the new

technology. Thus, Firm i’s expected payoff is λHΠ−c
2λH

. If Firm i applies for a patent, with

probability α, Firm j’s right to use the new technology is protected, and with probability

1− α, Firm i acquires the patent. In either case, Firm i’s expected payoff is at least λHΠ−c
2λH

,

thus, Firm i prefers to apply for a patent.

Next, consider the case where Firm j does not have the new technology. Suppose that

in equilibrium, Firm j allocates x ∈ [0, 1] to research and 1− x to development with the old

technology, when it observes the new technology discovery by Firm i (without a patent). To

maximize Firm j’s expected payoff, we have

µx · Ũ j + λL(1− x) · Π− c

λH + µx+ λL(1− x)
≥ λLΠ− c

λH + λL
, (B.11)

where Ũ j is Firm j’s expected payoff when it also discovers the new technology. To constitute

an equilibrium, Firm i’s expected payoff under this Firm j’s strategy should be greater than

or equal to Firm i’s expected payoff from applying for a patent:

λH · Π+ µx · Ũ i − c

λH + µx+ λL(1− x)
≥ ULicensor, (B.12)

where Ũ i is Firm i’s expected payoff when Firm j discovers the new technology.

Note that Ũ i + Ũ j ≤ Π− 2c
2λH

since the social welfare is maximized when both firms use

the new technology, and ULicensor +
λLΠ−c
λH+λL

= Π − c
λH

from Lemma 2. By using these and
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summing (B.11) and (B.12) up, we have

Π− c

λH
≤ Π−

µx
λH

+ 2

λH + µx+ λL(1− x)
c.

However, this inequality is equivalent to λH +µx+λL(1−x) ≥ 2λH +µx, which contradicts

λH > λL and x ≤ 1. Therefore, in equilibrium, Firm i applies for a patent.

B.2.2 Proof of Lemma 2

Proof of Lemma 2. When the offer is rejected, Firm j’s expected payoff is λLΠ−c
λH+λL

. Note that

V11 is the expected payoff when both firms race with the new technology. thus, when the

license offer with the fee l is accepted, Firm j’s expected payoff is V11 − l. Then, Firm i’s

optimal offer is l∗ = V11− (λLΠ− c)/(λH +λL), and we can derive (3.2) with simple algebra.

Then, once the offer is accepted, Firm i’s expected payoff is V11 + l∗ and Firm j’s expected

payoff is V11 − l∗.

B.2.3 Equilibrium Characterization

In this section, we fully characterize the equilibrium under public research progress with

patentable technology. Using the equilibrium licensing fee from Lemma 2, we can pin down

the continuation payoffs of both firms after the new technology is first discovered. We

use these continuation payoffs to analyze the resource allocation of the firms before the

new technology is first discovered. As in Section 3, we focus on Markov strategies, i.e.,

allocations that are independent of calendar time. Let siP denote the research allocation

of Firm i in the absence of the new technology discovery by either firm. The following

proposition characterizes the equilibrium resource allocations.

Proposition B.1. Suppose that firms’ research progress is public information. In any MPE,

the resource allocations before the new technology is first discovered are characterized as

follows:

(a) if λ⋆ > λL, both firms research: sAP = sBP = 1;

(b) if λHλL

2λH+λL
> λ⋆, both firms develop with the old technology: sAP = sBP = 0;
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Figure 6: Equilibrium Resource Allocations in the Patent Game under Public Information

(c) if λL > λ⋆ >
λHλL

2λH+λL
, there exist thresholds π̃0 > π̃1 > 1 such that

(i) when π/c > π̃0, both firms develop with the old technology: sAP = sBP = 0;

(ii) when π̃0 > π > π̃1, there are three equilibrium allocations: one firm does research

and the other firm develops with the old technology, i.e., (sAP , sBP ) = (1, 0) or (0, 1);

both firms allocate some amount z∗ ∈ (0, 1) resources to research: sAP = sBP = z∗;

(iii) when π̃1 > π, both firms research: sAP = sBP = 1;

Note that Proposition 2 corresponds to Proposition B.1 (a) and (c)-(i). Figure 6 sum-

marizes the result. We can see that firms conduct research in a wider parametric region

compared to the case without patents, as described in Figure 3. Intuitively, the option to

patent increases the value of conducting research.

B.2.4 Proof of Proposition B.1

We begin by extending our MPE characterization in Lemma B.3 to the cases where ∆1 and

∆0 have different signs.

Lemma B.4. The equilibrium allocations at state ∅ are characterized as follows:

(a) when ∆0 > 0 > ∆1, there are three possible equilibrium allocations:

(i) one firm does research and the other firm develops with the old technology, i.e.,

(sA(∅), sB(∅)) = (1, 0) or (0, 1),
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(ii) both firms allocate z∗ = ∆0/(∆0−∆1) amount of resources to research and the re-

mainder to the development with the old technology, i.e., (sA(∅), sB(∅)) = (z∗, z∗);

(b) when ∆1 > 0 > ∆0, there are three possible equilibrium allocations:

(i) both firms do research, i.e., (sA(∅), sB(∅)) = (1, 1),

(ii) both firms develop with the old technology, i.e., (sA(∅), sB(∅)) = (0, 0),

(iii) both firms allocate z∗ = −∆0/(∆1 − ∆0) amount of resources to research and

the remainder to the development with the old technology, i.e., (sA(∅), sB(∅)) =

(z∗, z∗).

Proof of Lemma B.4. (a) From ∆0 > 0 and (B.6), we have ∂u0

∂x
|y=0 > 0, i.e., x = 1 is the

best response for y = 0. In addition, from 0 > ∆1 and (B.6), we have ∂u0

∂x
|y=1 < 0,

i.e., x = 0 is the best response for y = 1. Therefore, (1, 0) and (0, 1) can be supported

equilibrium allocations at ω = ∅.

Next, note that z∗ ∈ (0, 1) and ∂u0

∂x
|y=z∗ = 0, i.e., any x ∈ [0, 1] is the best response for

y = z∗. Thus, (z∗, z∗) can be supported as an equilibrium allocation.

Last, consider any ỹ ∈ (0, 1) with ỹ ̸= z∗. Then, ∂u0

∂x
|y=ỹ ̸= 0, i.e., the best response is

x = 1 or x = 0. Recall that the best response of x = 1 (x = 0) is y = 0 (y = 1), thus,

y = ỹ cannot be a part of an equilibrium allocation.

(b) From ∆0 < 0 and (B.6), we have ∂u0

∂x
|y=0 < 0, i.e., x = 0 is the best response for y = 0.

Thus, (0, 0) can be supported as an equilibrium allocation.

Similarly, from 0 < ∆1 and (B.6), we have ∂u0

∂x
|y=1 > 0, i.e., x = 1 is the best response

for y = 1. Therefore, (1, 1) can also be supported as an equilibrium allocation.

Next, note that z∗ ∈ (0, 1) and ∂u0

∂x
|y=z∗ = 0, i.e., any x ∈ [0, 1] is the best response for

y = z∗. Thus, (z∗, z∗) can be supported as an equilibrium allocation.

Last, by using the similar argument as in the previous case, ỹ ∈ (0, 1) with ỹ ̸= z∗

cannot be a part of an equilibrium allocation.
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Proof of Proposition B.1. To apply Lemma B.4, we first compute ∆̂0 and ∆̂1 by replacing

(U i
{i}, U

j
{i}) to (ULicensor, ULicensee) in (B.5):

∆̂0 =
µULicensor − c

µ+ λL
− λLΠ− c

2λL
,

∆̂1 =
µULicensor + µULicensee − c

2µ
− λLΠ+ µULicensee − c

µ+ λL
.

By using Lemma 2, we can derive that

∆̂0 =
λHλL(λ⋆ − λL)Π + (λH + λL)λ⋆c

2λH(λH + λL)(λL + µ)
,

∆̂1 =
λHλL(λ⋆ − λL)Π + λL

2µ
{(2λH + µ+ λL)λ⋆ + (µ− λL)λH} c

2λH(λH + λL)(λL + µ)
.

First, observe that λ⋆ ≥ λL implies ∆̂0, ∆̂1 > 0. Then, by Lemma B.4 (a), both firms do

research, thus, Proposition B.1 (a) holds. Next, when λL > λ⋆, we have

∆̂0 > 0 ⇐⇒ π̃0 ≡
λ⋆(λH + λL)

λH(λL − λ⋆)
>
λLΠ

c
= π,

∆̂1 > 0 ⇐⇒ π̃1 ≡
λL

2µ
{(2λH + µ+ λL)λ⋆ + (µ− λL)λH}

λH(λL − λ⋆)
> π.

Suppose that λ⋆ ∈
(

λHλL

2λH+λL
, λL
)
. By using µ > λL, we can show that π̃0 > π̃1 > 1.

(i) if π > π̃0 > π̃1, we have ∆̂0, ∆̂1 < 0, then, by Proposition 1 (b), both firms develop

with old technology;

(ii) if π̃0 > π > π̃1, we have ∆̂0 > 0 > ∆̂1, then, by Proposition 1 (c), there are three

equilibria including the asymmetric one;

(iii) if π̃1 > π > 1, we have ∆̂0, ∆̂1 > 0, then, by Proposition 1 (a), both firms do research.

Thus, Proposition B.1 (b) holds.

Now suppose that λ⋆ ≤ λHλL

2λH+λL
. With some algebra, we have 1 ≥ π̃1 ≥ π̃0. From π > 1,

we have ∆̂0, ∆̂1 < 0, then, by Proposition 1 (b), both firms develop with old technology.

Thus, Proposition B.1 (c) holds.
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C Proofs for the Private Research Progress

C.1 Formal Definition of pσ and hσ

Given an allocation policy σ ∈ S, we define two arrival times: (i) τM represents the time

at which either the new technology is discovered or the product is developed by the old

technology; (ii) τD represents the time of the product development. Observe that, τM must

be less than or equal to τD by definition. This inequality is strict if and only if the new

technology is discovered prior to the product development. Therefore, we use (τM = τD)

to indicate the event that the new technology is discovered before the product is developed

using the old technology and (τM < τD) to indicate the event that the product is developed

before the new technology discovery.

Observe that pσ can be expressed in terms of τM and τD as follows: pσ(t) := Pr(τM < t <

τD | τD > t). Let Σt :=
∫ t

0
σ(s) ds represent the cumulative research. We begin by observing

that the probability that neither new technology discovery nor product development is made

by time t is given by

SM
σ (t) := Pr(τM > t) = e−λL(t−Σt)−µΣt . (C.1)

Additionally, we can derive the probability that new technology is discovered, but product

is yet to be developed by time t:

Lσ(t) := Pr(τM < t < τD) =

∫ t

0

µσ(s)e−λL(s−Σs)−µΣse−λH(t−s) ds. (C.2)

The probability SD
σ (t) that neither product development nor new technology discovery

was made by time t can be written as:

SD
σ (t) := Pr(τD > t) = Pr(τM > t) + Pr(τM < t < τD) = SM

σ (t) + Lσ(t). (C.3)

Finally, we obtain an expression for our conditional probability pσ in terms of Lσ and

SM
σ :

pσ(t) = Pr(τM < t | τD > t) =
Pr(τM < t < τD)

SD
σ (t)

=
Lσ(t)

SM
σ (t) + Lσ(t)

. (C.4)

For any continuous random variable, the hazard rate can be expressed as the negative of

37



the log of the survival function. The development rate of a firm that follows policy σ ∈ S

is the hazard rate associated with the random variable τD. Therefore, it can be derived as

follows:

hσ(t) = −
∂ log

[
SD
σ (t)

]
∂t

= −S
D
σ

′
(t)

SD
σ (t)

=
λL(1− σ(t)) · SM

σ (t) + λH · Lσ(t)

SM
σ (t) + Lσ(t)

=λL(1− σ(t)) · (1− pσ(t)) + λH · pσ(t).

(C.5)

Also note that from SD
σ (0) = 1, SD

σ (t) can be rewritten as follows:

SD
σ (t) = e−

∫ t
0 hσ(s)ds. (C.6)

C.2 Proofs of Lemmas

C.2.1 Proof of Lemma 3

Proof of Lemma 3. From (C.4), we can derive that pσ(t)/(1− pσ(t)) = Lσ(t)/S
M
σ (t). By

differentiating this equation side-by-side, we have

ṗσ(t)

(1− pσ(t))
2
=
Lσ(t)

SM
σ (t)

[
L′
σ(t)

Lσ(t)
− SM

σ
′
(t)

SM
σ (t)

]
=

pσ(t)

1− pσ(t)

[
L′
σ(t)

Lσ(t)
− SM

σ
′
(t)

SM
σ (t)

]
. (C.7)

From deriving (C.1) and (C.2), we obtain that

ṠM
σ (t) =− {λL(1− σ(t)) + µσ(t)} · SM

σ (t), (C.8)

L̇σ(t) =µ · σ(t) · SM
σ (t)− λH · Lσ(t) (C.9)

Using these expressions in (C.7) and multiplying side by side by (1− pσ(t))
2, we obtain the

desired result.
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C.2.2 Proof of Lemma 4

Proof of Lemma 4. Note that the conditional probability of having access to the new tech-

nology by time t only depends on the resource allocations prior to time t. Thus, since σ

and 1 have the same resource allocation by time t, pσ(t) and p1(t) are equal. By plug-

ging σ(t) = 1 to the result of Lemma 3, we have p′
σ(t) = (µ − λH pσ(t))(1 − pσ(t)). By

rearranging the differential equation, we can derive that

λH − µ =
d

dt
log

(
λH − λH pσ(t)

µ− λH pσ(t)

)

Then, from pσ(0) = 0, we can derive that

λH(1− pσ(t))

µ− λH pσ(t)
=
λH
µ
e(λH−µ)t

By rearranging the above equation, we have (4.2).

Observe that

p′
1(t) =

µ(λH − µ)2e(λH+µ)t

(λHeλH t − µeµt)2
> 0

Thus, p1(t) is increasing in t.

When µ > λH ,

lim
t→∞

p1(t) = lim
t→∞

1
λH

(
e(λH−µ)t − 1

)
1
µ
e(λH−µ)t − 1

λH

= 1.

When µ < λH ,

lim
t→∞

p1(t) = lim
t→∞

1
λH

(
1− e(µ−λH)t

)
1
µ
− 1

λH
e(µ−λH)t

=
µ

λH
.
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C.2.3 Proof of Lemma 5

Proof of Lemma 5. Our goal is to show that the unique solution of DR(p⋆, σ⋆) = λ⋆ and

BE(p⋆, σ⋆) = 0 is

p⋆ =
µ(λ⋆ − λL)

2λLλ⋆
= 1− (µ− λL)(λH − λ⋆)

2λLλ⋆
, (C.10)

σ⋆ =
λ⋆ − λL
µ− λL

. (C.11)

Then, to have (p⋆, σ⋆) ∈ (0, 1)2, we need to have min{µ, λH} > λ⋆ > λL.

From DR(p⋆, σ⋆) = λ⋆, BE(p⋆, σ⋆) = 0 and p⋆ < 1, we have

λ⋆ =p⋆λH + (1− p⋆)(1− σ⋆)λL, (C.12)

0 =µσ⋆ − {λH − (1− σ⋆)λL} p⋆. (C.13)

By rearranging (C.13), we have

µσ⋆ =λHp⋆ + (1− σ⋆)λL(1− p⋆)− λL(1− σ⋆) = λ⋆ − λL(1− σ⋆).

By solving this, we can derive (C.11).

Next, from (C.13) and (C.11), we have

p⋆ =
µσ⋆

λH − (1− σ⋆)λL
=

µ(λ⋆ − λL)

(µ− λL)λH − (µ− λ⋆)λL
.

Note that λLλ⋆ = (µ− λL)λH −µλL. By plugging this into the above equation, we have the

first equality of (C.10). Observe that

1− p⋆ =
2λLλ⋆ − µλ⋆ + µλL

2λLλ⋆
=
λL(µ+ λ⋆)− (µ− λL)λ⋆

2λLλ⋆
=

(µ− λL)(λH − λL)

2λLλ⋆
,

which confirms the second equality of (C.10).
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C.3 Proof of Proposition 3

C.3.1 Minimizing expected duration

When both firms employ σ, the probability that the race has not been ended by t is SD
σ (t)

2 =

(SM
σ (t) + Lσ(t))

2. Therefore, the expected duration of the race is
∫∞
0
(SM

σ (t) + Lσ(t))
2dt.

Under the assumption that both firms employs the same allocation policy, the problem

of minimizing the expected duration is:

max
σ

−
∫ ∞

0

(SM
σ (t) + Lσ(t))

2dt (C.14)

subject to (C.8), (C.9), SM
σ (0) = 1 and Lσ(0) = 0.

Lemma C.1. Given an allocation policy σ∗, define

ξ∗1(t) =−
∫ ∞

t

2(SM
σ∗(s) + Lσ∗(s)) · e

−λHs

e−λH t
ds, (C.15)

ξ∗0(t) =−
∫ ∞

t

{
2(SM

σ∗(s) + Lσ∗(s))− ξ1(s) · µσ∗(s)
}
· e

−λL(s−Σ∗
s)−µΣ∗

s

e−λL(t−Σ∗
t )−µΣ∗

t
ds.18 (C.16)

Suppose that the following equation holds:

σ∗(t) =



1, if µξ∗1(t) > (µ− λL)ξ
∗
0(t),

∈ [0, 1], if µξ∗1(t) = (µ− λL)ξ
∗
0(t),

0, if µξ∗1(t) < (µ− λL)ξ
∗
0(t).

(C.17)

Then, σ∗ solves (C.14) subject to (C.8), (C.9), SM
σ (0) = 1 and Lσ(0) = 0.

Proof of Lemma C.1. For simplicity, suppress subscripts of SM
σ and Lσ. Moreover, simply

denote S for SM . Let S∗(t) and L∗(t) denote SM
σ∗(t) and Lσ∗(t).

18Consider a firm (A) employs σ∗ and A knows that the rival firm (B) also employs the same policy σ∗.
If A possesses the new technology and does not know about B’s status and knows that the race has not
yet ended by time t, the expected duration is − ξ∗1 (t)

2(SM
σ∗ (t)+Lσ∗ (t))

. Likewise, if A does not possess the new
technology and does not know about B’s status and knows that the race has not yet ended by time t, the
expected duration is − ξ∗0 (t)

2(SM
σ∗ (t)+Lσ∗ (t))

.
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Observe that the Hamiltonian of the optimal control problem (C.14) is

H(σ(t), S(t), L(t), ξ0(t), ξ1(t)) := −(S(t) + L(t))2 − ξ0(t) · (λL(1− σ(t)) + µσ(t)) · S(t)

+ ξ1(t) · (µσ(t) · S(t)− λH · L(t))

As in Lemma OA.1.2, we need to check four primitive conditions.

1. For all t ≥ 0, (C.17) implies that

σ∗(t) ∈ argmax
x∈[0,1]

H(x, S∗(t), L∗(t), ξ∗0(t), ξ
∗
1(t)),

thus, the maximum principle holds.

2. Note that the following differential equations hold:

ξ̇∗0(t) = − ∂H

∂S(t)
= 2(S(t) + L(t)) + ξ∗0(t) · (λL(1− σt) + µσt)− ξ∗1(t) · µσt, (C.18)

ξ̇∗1(t) = − ∂H

∂L(t)
= 2(S(t) + L(t)) + λH · ξ∗1(t). (C.19)

Therefore, the conditions for the co-state variables evolutions are satisfied.

3. Note that lim
t→∞

ξ∗0(t) = lim
t→∞

ξ∗1(t) = 0. Therefore, the transversality condition holds.

4. Arrow sufficiency theorem (Seierstad, Sydsaeter, page 107, Theorem 5)

Ĥ(S(t), L(t), θ0(t), θ1(t)) = maxσt∈[0,1]H(σt, S(t), L(t), θ0(t), θ1(t)) is concave in (S(t), L(t)).

Note that

Ĥ(S(t), L(t), θ0(t), θ1(t)) =− (S(t) + L(t))2 − θ1(t) · λH · L(t)

− {θ0(t) · (λL(1− σ∗
t ) + µσ∗

t )− θ1(t) · µσ∗
t} · S(t).

Therefore, Ĥ is concave in (S(t), L(t)).
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Proposition C.1. For each parametric region, the following policies minimize the expected

duration of the race among symmetric policies:

i. the direct-development policy, σ = 0, when λ⋆ < λL;

ii. the research policy, σ = 1, when λ⋆ > min{λH , µ};

iii. the stationary fall-back policy, σ = σSF , when λ⋆ ∈ (λL,min{λH , µ}).

Proof of Proposition C.1.i. Suppose that σ∗ = 0. Then, we can derive that

S∗(t) = e−λLt, L∗(t) = 0, ξ∗0(t) = − 1

λL
e−λLt, and ξ∗1(t) = − 2

λL + λH
e−λLt.

With some algebra, we have

(µ− λL)ξ0(t)− µξ1(t) =
λL − λ⋆
λH + λL

e−λLt.

Therefore, µξ∗1(t) ≤ (µ − λL)ξ
∗
0(t) is equivalent to λL ≥ λ⋆. Then, by Lemma C.1, σ∗ = 0

solves the problem when λL ≥ λ⋆.

Proof of Proposition C.1.ii. Suppose that σ∗ = 1. We can derive that S(t) = e−µt and

L(t) = µ
λH−µ

(e−µt − e−λH t). By plugging these into (C.15) and (C.16), we have ξ∗0(t) = ψ0(t)

and ξ∗1(t) = ψ1(t) where

ψ0(t) :=
1

(λH − µ)(λH + µ)

[
−λH(λH + 2µ)

µ
e−µt +

µ(2λH + µ)

λH
e−λH t

]
, (C.20)

ψ1(t) :=
2

λH − µ

[
− λH
λH + µ

e−µt +
µ

2λH
e−λH t

]
. (C.21)

Then, with some algebra, we can derive that

µξ∗1(t)− (µ− λL)ξ
∗
0(t) =

λL(λH + λL)

(λH + λL)(λH + µ)

(
λH(λ⋆ − µ)

(λH − µ)µ
e−µt − µ(λ⋆ − λH)

(λH − µ)λH
e−λH t

)
.
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Observe that the right hand side is proportional to:

(λ⋆ −min{µ, λH}) · µλH ·

(
− e−λHt

λ2
H

)
−
(
− e−µt

µ2

)
λH − µ

+
λH
µ

·
(
min{µ, λH} − µ

λH − µ

)
e−µt +

µ

λH
·
(
λH −min{µ, λH}

λH − µ

)
e−λH t

Note that the second and third terms are nonnegative. Also note that if λ⋆ ≥ min{µ, λH},

the first term is nonnegative, since the derivative of − e−µt

µ2 with respect to µ is positive.

Then, by Lemma C.1, σ∗ = 1 solves the problem when λ⋆ ≥ min{λH , µ}.

Proof of Proposition C.1.iii. Let T⋆ be the solution of p1(T ) = p⋆, which is given by

T⋆ = 1
λH−µ

log
(

µ(1−p⋆)
µ−λHp⋆

)
. Then, σ∗ is defined as follows: σ∗(t) = 1 for all t < T⋆ and

σ∗(t) = σ⋆ for all t ≥ T⋆.

We can derive that

S(t) =


e−µt, if t < T⋆,

e−µT⋆−{λL(1−σ⋆)+µσ⋆}(t−T⋆), if t ≥ T⋆.

L(t) =


µ

λH − µ
(e−µt − e−λH t), if t < T⋆,

p⋆
1− p⋆

· S(t), if t ≥ T⋆.

Additionally, we can derive that

ξ∗0(t) =


ψ0(t) + S(T⋆ − t) · (ξ∗0(T⋆)− ψ0(T⋆)) + L(T⋆ − t) · (ξ∗1(T⋆)− ψ1(T⋆)), if t < T⋆,

− λH + λ⋆ + µσ⋆

λ⋆(1− p⋆)(λH + λ⋆)
S(t), if t ≥ T⋆.

ξ∗1(t) =


ψ1(t) + e−λH(T⋆−t) · (ξ∗1(T⋆)− ψ1(T⋆)) , if t < T⋆,

− 2

(1− p⋆)(λH + λ⋆)
S(t), if t ≥ T⋆.

With some algebra, it can be shown that µθ1(t) − (µ − λL)θ0(t) = 0. Therefore, σt = σ⋆
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satisfies (C.17).

Next, for all t ∈ [0, T⋆), we claim that µξ∗1(t) ≥ (µ − λL)ξ
∗
0(t) to satisfy (C.17). First,

with some algebra, we have µξ∗1(T⋆) = (µ−λL)ξ
∗
0(T⋆) and µξ∗1

′(T⋆) = (µ−λL)ξ
∗
0
′(T⋆). Then,

it suffices to show that µξ∗1
′′(T⋆)− (µ− λL)ξ

∗
0
′′(T⋆) ≥ 0. Note that

µξ∗1
′′(t)− (µ− λL)ξ

∗
0
′′(t) =

λHλLµe
−µt

λH + µ
·Ψ1(t) +

λ2L(µ− λ⋆)e
−µT⋆−µ(T⋆−t)

(λH + µ)(µ− λL)
·Ψ2(T⋆ − t)

where

Ψ1(t) :=
(λH − λ⋆)e

−(λH−µ)t − (µ− λ⋆)

λH − µ
,

Ψ2(t) :=
(λH − λ⋆)λHe

−(λH−µ)t − (µ− λ⋆)µ

λH − µ
.

Observe that both Ψ1 and Ψ2 are decreasing in t from λH ≥ λ⋆. Additionally, we have

Ψ1(T⋆) =
µ− λ⋆
µ− λL

and Ψ2(T⋆) =
(λH + µ− λL)(µ− λ⋆)

µ− λL
.

Since Ψ1 and Ψ2 are decreasing and µ ≥ λ⋆, Ψ1(t), Ψ2(t) ≥ 0 for all t ∈ [0, T⋆]. Therefore,

µξ∗1
′′(T⋆)− (µ− λL)ξ

∗
0
′′(T⋆) ≥ 0.

C.3.2 Recursive Formulation

Let V1(t;h) and V0(t;h) be the continuation payoffs of a firm with and without the new

technology at time t, respectively, when the opponent employs an allocation policy with

associated development rate h, and no firm has succeeded in development so far.

In the following lemmas, we formally derive V1, V0 and the HJB equations of them. Proofs

are relegated to the Online Appendix.

Lemma C.2. V1(t;h) is derived as follows:

V1(t;h) :=

∫ ∞

t

{λHΠ− c} · e−
∫ s
t (h(u)+λH)du ds. (C.22)
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In addition, the following differential equation holds:

0 = V ′
1(t;h) + (λHΠ− c)− (λH + h(t)) · V1(t;h). (HJB1)

Lemma C.3. Let v0 be the continuation payoff at time t of a firm that does not have the

new technology and employs allocation policy σ ∈ S when the opponent has a development

rate h ∈ H. Then, v0 takes a form of (C.23).

v0(t;σ,h) :=

∫ ∞

t

{σ(s)µV1(s;h) + (1− σ(s))λLΠ− c} · rh,σ(s; t) ds, (C.23)

rh,σ(s; t) :=e
−

∫ s
t {h(u)+σ(u)µ+(1−σ(u))λL}du.

In addition, the following differential equation holds:

0 = v′0(t;σ,h) + λL(1− σ(t)) · Π+ µσ(t) · V1(t;h)− c

− {λL(1− σ(t)) + µσ(t) + h(t)} · v0(t;σ,h).
(HJB0)

Then, V0(t;h) is derived as follows:

V0(t;h) := max
σ∈S

v0(t;σ,h). (C.24)

Best responses To characterize the optimal policy σ given the opponent’s development

rate h, define R(x, t;σ,h) and R(t;σ,h) as follows:

R(x, t;σ,h) := µx(V1(t;h)− v0(t;σ,h)) + λL(1− x)(Π− v0(t;σ,h)), (C.25)

R(t;σ,h) :=
∂R
∂x

(x, t;σ,h) = µ(V1(t;h)− v0(t;σ,h))− λL(Π− v0(t;σ,h)).

We can interpret R as the instantaneous payoff at time t by allocating x to research

and 1− x to development with the old technology. The new technology is discovered at the

rate µx, yielding the new continuation payoff V1(x;h) but losing the present continuation

payoff V0(x;h). Similarly, the product is developed with the old technology at the rate
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λL(1 − x), resulting in the reward Π but losing V0(x;h). At each time t, the firm chooses

a resource allocation to maximize R. Therefore, we interpret R as capturing the relative

incentives to conduct research: when R is positive, conducting research is preferred over

developing with the old technology, conversely, when R is negative, developing with the

old technology is preferred. The following proposition formalizes this verification arguments

given the opponent’s resource allocation policy σ̂. The proof is in Appendix OA.2.2.1.

Lemma C.4. An allocation policy σ∗ is a best-response to σ̂, i.e. U(σ∗, σ̂) ≥ U(σ, σ̂)

for all σ ∈ S, if and only if the following two conditions hold for every time t ≥ 0: (i)

v0(t;σ
∗,hσ̂) > 0; and (ii) σ∗(t) ∈ argmaxx∈[0,1]R(x, t;σ∗,hσ̂).

C.3.3 Equilibrium Characterization

Proof of Proposition 3 (a) We show that when λ⋆ < λL, σ∗ = 0 is the best response

to h0 by applying Lemma C.4. It suffices to show that R(t;0,h0) ≤ 0. Notice that for all

t ≥ 0, h0(t) = λL, V1(t;h0) =
λHΠ−c
λH+λL

, and v0(t;0,h0) =
λLΠ−c
2λL

. With some algebra, we have

R(t;0,h0) =
λLΠ+ c

2(λH + λL)
(λ⋆ − λL).

Therefore, when λ⋆ < λL, R(t;0,h0) ≤ 0.

Proof of Proposition 3 (b) We show that when λ⋆ > min{µ, λH}, σ∗ = 1 is the best

response to h1 by applying Lemma C.4. It suffices to show that R(t;1,h1) ≥ 0. With

some algebra, we can derive that for all t ≥ 0, h1(t) = λH p1(t), V1(t;h1) = Ṽ1(p1(t)) and

v0(t;1,h1) = Ṽ0(p1(t)), where

Ṽ1(p) :=
1

2

(
Π− c

λH

)
·
[
1 +

λH
λH + µ

(1− p)

]
, (C.26)

Ṽ0(p) :=
1

2

(
Π− c

µ
− c

λH

)
·
[
1− λH

λH + µ
p

]
− c

2(λH + µ)
. (C.27)
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Note that

d

dp

[
µ(Ṽ1(p)− Ṽ0(p))− λL(Π− Ṽ0(p))

]
= −

(
Π− c

µ
− c

λH

)
+ c

λL

2λH+µ
λHλL

< 0.

Since p1(t) is increasing in t, it suffices to show the following inequlaity:

lim
t→∞

R(t;1,h1) = lim
t→∞

µ(Ṽ1(p1(t))− Ṽ0(p1(t)))− λL(Π− Ṽ0(p1(t))) ≥ 0. (C.28)

When µ ≥ λH , since lim
t→∞

p1(t) = 1, with some algebra, we have

lim
t→∞

R(t;1,h1) = µ(Ṽ1(1)− Ṽ0(1))− λL(Π− Ṽ0(1)) =
(λHΠ+ c)λL(λ⋆ − λH)

2λH(λH + µ)
,

which is nonnegative from λ⋆ ≥ min{λH , µ}.

Next, when µ < λH , since lim
t→∞

p1(t) = µ/λH , with some algebra, we have

lim
t→∞

R(t;1,h1) = µ(Ṽ1(
µ
λH

)− Ṽ0(
µ
λH

))− λL(Π− Ṽ0(
µ
λH

)) =
(µΠ+ c)λL(λ⋆ − µ)

2µ(λH + µ)
,

which is also nonnegative from λ⋆ ≥ min{λH , µ}.

Proof of Proposition 3 (c) We show that when min{µ, λH} > λ⋆ > λL, σ∗ = σSF is

the best response to hσSF by applying Lemma C.4. Specifically, it suffices to show that (i)

R(t;σSF ,hσSF ) = 0 for all t ≥ T⋆; and (ii) R(t;σSF ,hσSF ) ≥ 0 for all t < T⋆.

When t ≥ T⋆, by the definitions of the stationary fall-back policy and the steady state,

we have hσSF (t) = DR(p⋆, σ⋆) = λ⋆. With some algebra, we can derive that for all t ≥ T⋆,

V1(t;hσSF ) = V 1
⋆ and v0(t;σSF ,hσSF ) = V 0

⋆ , where

V 1
⋆ :=

λHΠ− c

λH + λ⋆
and V 0

⋆ :=
λL(λLΠ− c)

(µ− λL)(λH − λL)
.

Additionally, with some algebra, we have

R(t;σSF ,hσSF ) = µ(V 1
⋆ − V 0

⋆ )− λL(Π− V 0
⋆ ) = 0
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for all t ≥ T⋆.

Next, since σSF (t) = 1 for all t < T⋆, we have hσSF (t) = λH p1(t). By solving (HJB1)

and (HJB0), we have V1(t;hσSF ) = V̂1(p1(t)) and v0(t;σSF ,hσSF ) = V̂0(p1(t)) where

V̂1(p) =Ṽ1(p) + C1 · (1− p) ·
(
µ− λHp

1− p

)µ+λH
µ−λH

, (C.29)

V̂0(p) =Ṽ0(p) +

(
C0 ·

(
µ

λH
− p

)
− C1 ·

µ

λH

)
·
(
µ− λHp

1− p

)µ+λH
µ−λH

, (C.30)

for some constants C1 and C0. Using the terminal conditions, V̂1(p1(T⋆)) = V 1
⋆ and V̂0(p1(T⋆)) =

V 0
⋆ , we can identify C1 and C0:

C1 =
1

1− p⋆
·
(

1− p⋆
µ− λHp⋆

)µ+λH
µ−λH

(V 1
⋆ − Ṽ1(p⋆)), (C.31)

C0 =C1 ·
µ

µ− λHp⋆
+

λH
µ− λHp⋆

(
1− p⋆

µ− λHp⋆

)µ+λH
µ−λH

(V 0
⋆ − Ṽ0(p⋆)). (C.32)

Define R̂(p) := µ(V̂1(p)−V̂0(p))−λL(Π−V̂0(p)), then we have R(t;σSF ,hσSF ) = R̂(p1(t)).

Since p1 is increasing and p1(T⋆) = p⋆, R(t;σSF ,hσSF ) ≥ 0 for all t ∈ [0, T⋆] is equivalent

to R̂(p) ≥ 0 for all p ∈ [0, p⋆]. Note that R̂(p⋆) = µ(V 1
⋆ − V 0

⋆ )− λL(Π− V 0
⋆ ) = 0. Therefore,

it suffices to show that R̂′′(p) < 0 and R̂(0) ≥ 0.

With some algebra, we can derive that R̂′′(p) = −A(p) · B(p) where

A(p) =
λ2L(λH − λ⋆)

2(1− p)
−3+

2λH
λH−µ

µ2(λH − λL)2(µ− λHp)

(
(µ− λHp)(µ− λL)(λH − λ⋆)

(λH − λL)µ(µ− λ⋆)

) 2λH
µ−λH

,

B(p) =(µ− λLp)(µΠ− c) + (1− p)(λH − λL)µΠ.

Since min{λH , µ} > λ⋆ > λL and 0 ≤ p ≤ p⋆ < lim
t→∞

p1(t) = min{1, µ/λH}, we have A(p) > 0

and B(p) > 0, thus, R̂′′(p) < 0.

Next, with some algebra, we can also derive that

R̂(0) = λL · λHµΠ− λLc

2λHµ(λH + µ)
·G(λ⋆) +

λL(λ⋆ − λL)c

2λHµ
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where

G(x) := x− λL

(
1− x− λL

λH − λL

)2

·

(
1− x−λL

λH−λL

1− x−λL

λH−µL

) 2λH
µ−λH

.

Note that G(λL) = 0 and

G′(x) := 1 +
2λL(λH − x)(λH + µ− x)

(λH − λL)2(µ− x)
·

(
1− x−λL

λH−λL

1− x−λL

λH−µL

) 2λH
µ−λH

≥ 0

for all min{µ, λH} > x ≥ λL. Therefore, from λHµΠ− λLc > 0, λ⋆ ≥ λL and G(λ⋆) ≥ 0, we

have R̂(0) ≥ 0.

C.4 Patentable Technology

C.4.1 Proofs for Efficient Patent Equilibrium

Proof of Lemma 6. Suppose that Firm i has discovered the new technology, and Firm j has

not applied for a patent yet. Given Firm j’s patent application strategy, the fact that Firm

j has not applied for a patent implies that Firm j does not have the new technology yet.

Therefore, if Firm i applies for a patent, it will attain the patent with probability one and its

expected continuation payoff is ULicensor = V11+ l∗. Suppose instead that Firm i decides not

to apply for a patent. Firm i’s payoff in the case in which Firm i finds the new technology

before a successful development is Uβ
Challenger = V11−(1−β) · l∗. Therefore, Firm i’s expected

payoff of not applying for a patent is

λHΠ+ µ · Uβ
Challenger − c

λH + µ
=

(µ+ 2λH)V11 − µ(1− β)l∗

λH + µ
. (C.33)

Firm i applies for a patent when ULicensor is greater than (C.33), which is equivalent to:

(λH + µ)V11 + (λH + µ)l∗ > (µ+ 2λH)V11 − µ(1− β)l∗

⇐⇒ {λH + µ(2− β)} l∗ > λHV11.

Since 1 > β, λH , µ > 0 and V11 > 0, it is equivalent to (4.5).
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Proof of Proposition 4. By plugging (3.2) in, we have that (4.5) is equivalent to:

λH − λL
λH + λL

· λHΠ+ c

λHΠ− c
>

λH
λH + µ(2− β)

⇐⇒ {λH(λH − λL) + µ(λH − λL)(2− β)} (λHΠ+ c) > λH(λH + λL)(λHΠ− c)

⇐⇒ {µ(λH − λL)(2− β)− 2λLλH} · λHΠ+
{
µ(λH − λL)(2− β) + 2λ2H

}
· c > 0.

Note that µ(λH−λL) = λL(λ⋆+λH) from (3.1). By plugging this in, the above inequality

is equivalent to:

{(2− β)λ⋆ − βλH} · λHλLΠ+
{
(2− β)λL(λ⋆ + λH) + 2λ2H

}
· c > 0

⇐⇒ (λ⋆ + λH)
(
β̂ − β

)
· λH

(
λLΠ

c
− 1

)
+ (2− β)(λL + λH)(λ⋆ + λH) > 0.

If β ≤ β̂, the first term in the above inequality is nonnegative and the second term is positive

from β < 1 and λL, λH , λ⋆ > 0. If β > β̂, by rearranging it and using π = λLΠ
c

, we can

show that the above inequality is equivalent to (4.6).

C.4.2 Proofs for Concealment Equilibrium

Let σ∗ denote the unique equilibrium policy in Proposition 3. From (C.22), V1(t;hσ∗) is the

continuation value of firms in such equilibrium. A concealment equilibirium is an equilibrium

of the game with patents such that the firms never patent the new technology and follow

policy σ∗.

Observation There is a concealment equilibrium if and only if, for all t ≥ 0,

V1(t;hσ∗) ≥ V11 + (1− β pσ∗(t)) · l∗. (C.34)

To understand the observation, notice that (C.34) captures the trade-off in the patenting

decision of a firm that discovers the new technology at time t, when the opponent follows

policy σ∗ and never patents. The left-hand-side denotes the payoff obtained by not patenting,

i.e by keeping the discovery secret. The right-hand-side captures the expected payoff if the
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firm decides to patent at time t. If (C.34) holds for all t, then it is a best response to never

patent.

Under λH > λ⋆ > µ, by Proposition 3 (b), firms employ the research policy in the private

information setting, i.e., σ∗ = 1. The following lemma provides the closed form solution of

V1(t;h1).

Lemma C.5. When λH > λ⋆ > µ, the following equation holds:

V1(t;h1) =

{
1 +

λH
λH + µ

(1− p1(t))

}
· V11. (C.35)

Proof of Lemma C.5. By Lemma 4, p1(t) is increasing in t. Then, V1(t;h1) can be written

as a function of p1(t): V1(t;h1) = v1(p1(t)). Observe that

V ′
1(t;h1) = v′1(p

′
1(t)) · p′

1(t) = v′1(p
′
1(t)))(µ− λH p1(t))(1− p1(t)).

By plugging this into (HJB1), we have

0 = v′1(p)(µ− λHp)(1− p)− λH(1 + p)v1(p) + λHΠ− c. (C.36)

Define two function g(p) and k(p) as follows:

g(p) :=
(µ− λHp)

µ+λH
λH−µ

(1− p)
2λH

λH−µ

and k(p) := 1 +
λH

λH + µ
(1− p). (C.37)

Observe that

g′(p)

g(p)
=
d log(g(p))

dp
= −µ+ λH

λH − µ
· λH
µ− λHp

+
2λH

λH − µ
· 1

1− p
= − λH(1 + p)

(1− p)(µ− λHp)
(C.38)

and

d

dp
(g(p) · k(p)) = − λH(1 + p)k(p)

(1− p)(µ− λHp)
g(p)− λH

λH + µ
g(p) = − 2λH

(1− p)(µ− λHp)
g(p) (C.39)

52



By multiplying (C.36) by g(p)
(µ−λHp)(1−p)

and using above two equations, we have

0 =v′1(p) · g(p) + g′(p) · v1(p) +
λHΠ− c

2λH
· g(p)

(1− p)(µ− λHp)

=
d

dp
[(v1(p)− V11 · k(p)) · g(p)] .

Therefore, there exists C ∈ R such that

v1(p) = V11 · k(p) +
C

g(p)
. (C.40)

In Lemma 4, we show that if µ ≥ λH , lim
t→∞

p1(t) = 1, and if µ < λH , lim
t→∞

p1(t) = µ/λH .

By using these, we have that lim
t→∞

g(p1(t)) = 0. Then, to satisfy V1(t;h1) = v1(p1(t)) and

(C.40), the constant C has to be zero, and (C.35) holds.

By using this lemma, (C.34) is equivalent to:

l∗

V11
<

λH
λH + µ

· 1− p1(t)

1− β · p1(t)
. (C.41)

The right hand side is decreasing in p1(t). Under λH > λ⋆ > µ, p1(t) converges to µ/λH ,

thus, we can plug this into (C.41):

l∗

V11
<

λH(λH − µ)

(λH + µ)(λH − βµ)
. (C.42)

With simple algebra, we can show that λH(λH−µ)
(λH+µ)(λH−βµ)

≤ λH

λH+µ(2−β)
. Therefore, the threshold

for the concealment equilibrium is below the one for the efficient patent equilibrium, i.e.,

there is no parameter such that both the efficient patent equilibrium and the concealment

equilibrium exist. By solving (C.42), we can pin down the parametric conditions under which

the concealment equilibrium exists.

β > β̃ :=
2λH(µ+ λ⋆)

(λH + µ)(λH + λ⋆)
(C.43)
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and

π > π̃(β) := 1 +
λH + λL
λH + µ

· 2λH − (λH + µ)β

λH(β − β̃)
. (C.44)

Now we provide the proof of Proposition 5

Proof of Proposition 5. By using using µ(λH −λL) = λL(λ⋆+λH), λH(µ−λL) = λL(λ⋆+µ)

and (3.2), we have that (C.42) is equivalent to:

(λH + λL)(2λH − β(λH + µ)) < (λH + µ)(β − β̃)λH · (π − 1) .

Note that 2λH − β(λH + µ) > 0 from λH > µ and 1 ≥ β. Therefore, if β ≤ β̃, the above

inequality cannot hold. When β > β̃, by rearranging the above inequality, we have (C.44).

Observe that β̃ > β̂ is equivalent to:

2λH(µ+ λ⋆) > 2λ⋆(λH + µ)

and it holds from the assumption that λH > λ⋆.

Next, observe that π̃(β) ≥ π̂(β) is equivalent to:

2λH

λH+µ
− β

β − β̃
≥ 2− β

β − β̂
⇐⇒

2λH

λH+µ
− β̃

β − β̃
≥ 2− β̂

β − β̂
. (C.45)

Also note that

2λH
λH + µ

− β̃ =
2λH

λH + µ
· λH − µ

λH + λ⋆
and 2− β̂ =

2λH
λH + λ⋆

.

By plugging these in, (C.45) is equivalent to:

β̃ − λH − µ

λH + µ
β̂ ≥ 2µ

λH + µ
β. (C.46)

Note that

β̃ − λH − µ

λH + µ
β̂ =

2λH(µ+ λ⋆)

(λH + µ)(λH + λ⋆)
− λH − µ

λH + µ
· 2λ⋆
λH + λ⋆

=
2µ

λH + µ
.
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Therefore, (C.46) is equivalent to 1 ≥ β. Therefore, π̃(β) ≥ π̂(β) holds for all 1 ≥ β > β̃

and the equality holds if and only if β = 1.
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Online Appendix for “Strategic

Concealment in Innovation Races”

OA.1 Benchmark: Single Firm Setting

To interpret λ⋆ as defined in (3.1), it is useful to consider a setting in which there is a single

firm attempting to develop the product, and the game ends exogenously at a stochastic

termination rate λ.19 The firm receives the reward Π only if it completes development before

the game ends, and incurs the cost c until either the game ends or the product is developed.

Analyzing this case provides key insights that are useful in characterizing the solution in the

race with two firms.

Once the firms discovers the new technology, it develops the product at rate λH . Before

the firm obtains the new technology, allocation decisions depend solely on calendar time.

We define the firm’s allocation policy as a right-continuous function σ : R+ → [0, 1] that

represents the share of attention allocated to research at any time before discovery. Let S

denote the set of such policies.

In the following proposition, we show that the firm’s optimal allocation policy, i.e. the

allocation policy that maximizes the firm’s expected payoff, is determined by λ⋆(µ).

Proposition OA.1.1. In the benchmark case with an exogenous termination rate λ, a firm’s

optimal allocation policy is characterized as follows:

(a) if λ < λ⋆(µ), the firm employs the research policy (σ = 1);20

(b) if λ > λ⋆(µ), the firm employs the direct-development policy (σ = 0);

(c) if λ = λ⋆(µ), the firm is indifferent between researching and developing with the old

technology.

19As an alternative interpretation, one can equivalently consider that one of the firms, e.g. Firm B,
maintains a constant development rate λ without engaging in resource allocation, and analyze the optimal
allocation of Firm A.

201 : R → [0, 1] is defined as 1(t) = 1 for all t ∈ R+. Similarly, 0 is defined as 0(t) = 1 for all t ∈ R+.
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Figure 7: Probability distribution functions of a firm’s development time

To illustrate the intuition behind this proposition, Figure 7 shows the probability distri-

butions of development times with the direct development policy (red dotted curve) and the

research policy (blue solid curve). The direct development policy is more likely to produce a

successful product in a short time frame, as it requires only one breakthrough. In contrast,

the research policy produces a successful product after two breakthroughs and, although it

has a shorter expected development time, is less likely to lead to quick development.

OA.1.1 Proof of Proposition OA.1.1

Suppose that a firm faces an exogenous termination rate λ and has already discovered the

new technology. Then, the firm develops with rate λH . Firm i’s probability of developing

the product before termination is λH

λH+λ
and the expected duration is 1

λH+λ
. Therefore, the

firm’s expected continuation payoff is given by

V1
λ :=

λH
λH + λ

· Π− 1

λH + λ
· c = λHΠ− c

λH + λ
. (OA.1.1)

Now suppose that the firm has not yet discovered the new technology. The following

lemma characterizes the firm’s expected payoff when it employs an allocation policy σ.

Lemma OA.1.1. In the benchmark case with an exogenous termination rate λ, if a firm

employs an allocation policy σ, its expected payoff is given as follows:

V 0
λ (σ) =

∫ ∞

0

(
λL(1− σ(t)) · Π+ µ σ(t) · V1

λ − c
)
· e−λL(t−Σt)−µΣt−λt dt, (OA.1.2)

2



where Σt ≡
∫ t

0
σ(s)ds.

Proof of Lemma OA.1.1. Let τλ be the arrival time of termination. When any of the arrival

times τL, τR and τλ occurs, we can regard that the firm’s payoff is realized. Furthermore,

it incurs a flow cost c until one of these arrival times takes place. Thus, the firm’s expected

payoff can be written as follows:

V 0
λ (σ) =Pr[τL < (τR ∧ τλ)] · Π+ Pr[τR < (τL ∧ τλ)] · V1

λ − E[(τL ∧ τR ∧ τλ)] · c. (OA.1.3)

Note that the survival function of (τR ∧ τλ) is e−
∫ t
0 (µσ(s)+λ)ds = e−µΣt−λt. By using (A.4)

and (A.7), we have

Pr[τL < (τR ∧ τλ)] =
∫ ∞

0

λL(1− σ(t)) · e−λL(t−Σt)−µΣt−λt dt.

Likewise, we can derive that

Pr[τR < (τL ∧ τλ)] =
∫ ∞

0

µ σ(t) · e−λL(t−Σt)−µΣt−λt dt.

Next, observe that the survival function of (τL ∧ τR ∧ τλ) is

e−λL(t−Σt)−µΣt−λt = e−(λL+λ)t−(µ−λL)Σt .

Then, from µ ≥ λL and Σt + Σ̂t ≥ 0, we have limt→∞ t · e−λL(t−Σt)−µΣt−λt = 0. By applying

(A.1), we have

E[(τL ∧ τR ∧ τλ)] =
∫ ∞

0

e−λL(t−Σt)−µΣt−λt dt.

By plugging the above equations into (OA.1.3), we obtain (OA.1.2).

Consider constant research allocation strategies, which allocate a fixed amount of re-

sources to research until either the new technology is discovered or the race ends, i.e., for

some x ∈ [0, 1], σi(t) = x for all t ≥ 0.

When a firm allocates x amount of resources towards research, there are three potential

outcomes: (i) the firm develops the product with the old technology at rate λL(1 − x); (ii)
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the firm discovers the new technology at rate µx; (iii) the game is terminated at rate λ.

In the first scenario, the firm successfully develops before termination and receives Π, and

the probability of this event happening is λL(1−x)
λL(1−x)+µx+λ

. In the second scenario, the firm

enters the post-research phase, and its expected payoff is V1
λ. The probability of this event

occurring is µx
λL(1−x)+µx+λ

. In the third scenario, the firm receives nothing, and the probability

of this event happening is λ
λL(1−x)+µx+λ

. The expected remaining duration is 1
λL(1−x)+µx+λ

.

Therefore, the firm’s expected payoff is given by

u(x) :=
λL(1− x) · Π+ µx · V1

λ − c

λL(1− x) + µx+ λ
. (OA.1.4)

The following lemma shows that the constant research allocation strategy σ with x max-

imizing u maximizes V 0
λ . Thus, it is without loss to focus on constant research allocation

strategies.

Lemma OA.1.2. Suppose that x0 ∈ argmaxx∈[0,1] u(x) where u is a function defined in

(OA.1.4). Let σ∗ : R+ → [0, 1] be σ∗(t) = x0 for all t ≥ 0. Then, σ∗(t) ∈ argmaxσ V
0
λ (σ).

Proof of Lemma OA.1.2. Let rt denote e−λL(t−Σt)−µΣt−λt. By taking a derivative, we have

ṙt = −{λL(1− σ(t)) + µσ(t) + λ} · rt. (OA.1.5)

By Lemma OA.1.1, the firm’s problem is

max
σ∈S

∫ ∞

0

{
λL(1− σ(t)) · Π+ µσ(t) · V1

λ − c
}
· rt dt (OA.1.6)

subject to (OA.1.5).

Observe that the Hamiltonian of this optimal control problem is

H(σ(t), rt, ηt) =
{
λL(1− σ(t)) · Π+ µσ(t) · V1

λ − c
}
· rt

− ηt {λL(1− σ(t)) + µσ(t) + λ} · rt

= {u(σ(t))− ηt} · {λL(1− σ(t)) + µσ(t) + λ} · rt, (OA.1.7)
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where ηt is a co-state variable.

To show that σ∗ is a solution of (OA.1.6) subject to (OA.1.5) by using the Arrow suffi-

ciency condition (Seierstad and Sydsaeter, 1987, Theorem 3.14), we consider (η∗, r∗) defined

as follows: for all t ≥ 0, η∗t = u(x0) and r∗t = e−{µx0+λL(1−x0)+λ}·t.

Then, we need to check following four primitive conditions:

1. Maximum principle: for all t ≥ 0,

σ∗(t) = x0 ∈ argmax
x∈[0,1]

H(x, r∗t , η
∗
t ). (OA.1.8)

2. Evolution of the co-state variable:

η̇∗t = −∂H
∂rt

= −{u(σ∗(t))− η∗t } · {λL(1− σ∗(t)) + µσ∗(t) + λ}. (OA.1.9)

3. Transversality condition: If r∗ is the optimal trajectory, i.e., r∗t = e−{µx0+λL(1−x0)+λ}·t,

limt→∞ η∗t (r
∗
t − rt) ≤ 0 for all feasible trajectories rt.

4. Ĥ(rt, ηt) = maxx∈[0,1]H(x, rt, ηt) is concave in rt.

First, by plugging r∗t and η∗t into (OA.1.7), we have

H(σ(t), r∗t , η
∗
t ) = {u(σ(t))− u(x0)} · {λL(1− σ(t)) + µσ(t) + λ} · rt. (OA.1.10)

Recall that x0 ∈ argmaxx∈[0,1] u(x). Thus, H(x, r∗t , η
∗
t ) ≤ 0 for all x ∈ [0, 1]. In addition,

H(x0, r
∗
t , η

∗
t ) = 0. Therefore, x0 ∈ argmaxx∈[0,1]H(x, rt, ηt), i.e., (OA.1.8) holds.

Second, by the definition of η∗, (OA.1.9) holds.

Third, note that for any admissible allocation policy σ,

rt = e−{µΣt+λL(t−Σt)+λt} = r∗t · e(µ−λL)·(x0t−Σt).

Then, we have

lim
t→∞

η∗t · (r∗t − rt) = lim
t→∞

u(x0) · r∗t ·
(
1− e(µ−λL)·(x0t−Σt)

)
= 0.
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Last, we can see that Ĥ is linear in rt, thus, the fourth condition holds. Hence, by the

Arrow sufficiency condition, σ∗ is the best response to σ̂∗.

Now we are ready to prove Proposition OA.1.1.

Proof of Proposition OA.1.1 . After taking the first derivative of u, with some algebra, we

can derive that

u′(x) =
λL(λΠ+ c)(λ⋆ − λ)

(λ+ λH)(λ+ (1− x)λL + xµ)2
. (OA.1.11)

Therefore, from x ∈ [0, 1], x = 1 is optimal when λ < λ⋆, x = 0 is optimal when λ > λ⋆, and

any x ∈ [0, 1] is optimal when λ = λ⋆.

OA.2 Omitted Proofs in Private Research Progress

OA.2.1 Proof of Lemma C.2

Proof of Lemma C.2. Let τ̂D be the arrival time of the product development by the opponent

whose development rate is h. Note that the continuation payoffs can be written as follows.

V1(t;h) =Pr[τD < τ̂D | τM = t < (τD ∧ τ̂D)] · Π

− c · E[τD ∧ τ̂D − t | τM = t < (τD ∧ τ̂D)].
(OA.2.1)

Note that (conditional) survival functions of τ̂D and τD can be written as follows:

Pr[τ̂D > s | τM = t < (τD ∧ τ̂D)] =e−
∫ s
t h(u)du,

Pr[τD = τH > s | τR = t < (τL ∧ τ̂D)] =e−λH(s−t).

By applying (A.4) and (A.5), we have

Pr[τD < τ̂D | τR = t < (τL ∧ τ̂D)] =
∫ ∞

t

λHe
−

∫ s
t (λH+h(u))duds,

E[τD ∧ τ̂D − t | τR = t < (τL ∧ τ̂D)] =
∫ ∞

t

e−
∫ s
t (λH+h(u))duds.

By plugging these equations into (OA.2.1), we can derive that (C.22) holds.

6



By taking a derivative of (OA.2.1), we have

V ′
1(t;h) =− (λHΠ− c) · e−

∫ t
t (λH+h(u))du + (λH + h(t)) · (λHΠ− c) ·

∫ ∞

t

e−
∫ s
t (λH+h(u))duds

=− (λHΠ− c) + (λH + h(t)) · V1(t;h),

which is equivalent to (HJB1).

OA.2.2 Proof of Lemma C.3

Proof of Lemma C.3. We focus on the event such that (τM ∧ τ̂D) > t. The continuation

payoff can be written as follows:

v0(t;σ,h) =Pr[τD < τ̂D | (τM ∧ τ̂D) > t] · Π− c · E[τD ∧ τ̂D − t | (τM ∧ τ̂D) > t]. (OA.2.2)

Note that

Pr[τM > s | τM > t] =
SM
σ (s)

SM
σ (t)

,

Pr[τD > s > τM > t | τM > t] =

∫ s

t

e−λH(s−u) · µσ(u) · S
M
σ (u)

SM
σ (t)

du =
Lσ(s|t)
SM
σ (t)

,

where Lσ(s|t) ≡
∫ s

t
e−λH(s−u) ·µσ(u)·SM

σ (u)du. Then, the survival function of τD conditional

on τM > t can be written as follows:

SD
σ |t(s) ≡ Pr [τD > s | τM > t] =

SM
σ (s) + Lσ(s|t)

SM
σ (t)

Also note that Pr[τ̂D > s | τ̂D > t] = e−
∫ s
t h(u)du.

Observe that

L′
σ(s|t) = µσ(s) · SM

σ (s)− λH · Lσ(s|t). (OA.2.3)

Since τD and τ̂D are independent, we can apply (A.3) and (A.5) by resetting the initial time

7



to t. Then, by using (C.8) and (OA.2.3), we have

Pr[τD < τ̂D | (τM ∧ τ̂D) > t] =−
∫ ∞

t

SD
σ |t

′
(s) · e−

∫ s
t h(u)duds

=

∫ ∞

t

λL(1− σ(s)) · SM
σ (s) + λH · Lσ(s|t)
SM
σ (t)

· e−
∫ s
t h(u)duds,

E[τD ∧ τ̂D − t | (τM ∧ τ̂D) > t] =

∫ ∞

t

SM
σ (s) + Lσ(s|t)

SM
σ (t)

· e−
∫ s
t h(u)duds.

By plugging these into (OA.2.2) and using (C.5), we can derive that

v0(t;σ,h) =

∫ ∞

t

[
{λL(1− σ(s))Π− c} · SM

σ (s) + (λHΠ− c) · Lσ(s|t)
]
· e

−
∫ s
t h(u)du

SM
σ (t)

ds.

Thus, it remains to show that

∫ ∞

t

µσ(s)·V1(s;h)·SM
σ (s)·e−

∫ s
t h(u)du ds = (λHΠ−c)·

∫ ∞

0

Lσ(s|t)·e−
∫ s
t h(u)du ds. (OA.2.4)

By plugging (C.22) into the left hand side of (OA.2.4), we have

∫ ∞

t

µσ(s) · (λHΠ− c) ·
[∫ ∞

s

e−
∫ u
s (λH+h(v))dvdu

]
· SM

σ (s) · e−
∫ s
t h(v)dv ds

=(λHΠ− c) ·
∫ ∞

t

Lσ(u|t) · e−
∫ u
t h(v)dv du.

Thus, (C.23) holds.

Last, to show that (HJB0) holds, we multiply SM
σ (t) · e−

∫ t
0 h(u)du to (C.23) and take a

derivative:

− [λL(1− σ(t)) · Π+ µσ(t) · V1(t;h)− c] · SM
σ (t) · e−

∫ t
0 h(u)du

=

[
v′0(t;σ,h)−

(
−S

M
σ

′
(t)

SM
σ (t)

+ h(t)

)
· v0(t;σ,h)

]
· SM

σ (t) · e−
∫ t
0 h(u)du.

By using (C.8) and SM
σ (t) · e−

∫ t
0 h(u)du > 0, we can see that (HJB0) holds.
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OA.2.2.1 Proof of Lemma C.4

In this subsection, we prove the verification result (Lemma C.4). To prove the verification

result, it is useful to first introduce two convergence results.

Lemma OA.2.1. For any σ ∈ S, the following holds:

lim
t→∞

V1(t;hσ) · SD
σ (t) = 0.

Proof. Recall that Σt :=
∫ t

0
σ(s) ds. From λH > λL and µ > λL, we have

e−µt ≤ SM
σ (t) = e−λL(t−Σt)−µΣt ≤ e−λLt, (OA.2.5)

0 ≤ Lσ(t) =

∫ t

0

µσ(s) · SM
σ (s) · e−λH(t−s) ds

<e−(λL+λH)t ·
∫ t

0

µ · eλHs ds <
µ

λH
e−λLt.

(OA.2.6)

Note that the left inequality of (OA.2.5) binds when Σt = t, and the left inequality of

(OA.2.6) binds when Σt = 0. By (C.3), we have

e−µt < SD
σ (t) = SM

σ (t) + Lσ(t) < e−λLt ·
(
µ+ λH
λH

)
. (OA.2.7)

From (C.6) and (C.22), we have

SD
σ (t) · V1(t;hσ) = (λHΠ− c) ·

∫ ∞

t

e−λH(s−t) · SD
σ (s) ds.

By applying (OA.2.7) and since λHΠ > λLΠ > c, we have

(λHΠ− c) ·
∫ ∞

t

e−λH(s−t) · SD
σ (s) ds > (λHΠ− c) ·

∫ ∞

t

e−λH(s−t) · e−µs ds

=
λH

µ+ λH

(
Π− c

λH

)
· e−µt
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and

(λHΠ− c) ·
∫ ∞

t

e−λH(s−t) · SD
σ (s) ds < (λHΠ− c) ·

∫ ∞

t

e−λH(s−t) · µ+ λH
λH

e−λLs ds

=
µ+ λH
λL + λH

(
Π− c

λH

)
· e−λLt.

Therefore, we have that

λH
µ+ λH

(
Π− c

λH

)
· e−µt < SD

σ (t) · V1(t;hσ) <
µ+ λH
λL + λH

(
Π− c

λH

)
· e−λLt. (OA.2.8)

Since the lower bound and the upper bound converge to 0 as t goes to infinity, we obtain

the desired result.

Lemma OA.2.2. For any σ, σ̂ ∈ S,

lim
t→∞

v0(t;σ,hσ̂) · SM
σ (t) · SD

σ̂ (t) = 0. (OA.2.9)

Proof. Note that for any time s ∈ R+, −c < λL(1− σ(s))Π− c < λLΠ. Since λLΠ > c, we

have |λL(1− σ(s))Π− c| < λLΠ.

From (C.23), we have

∣∣v0(t;σ,hσ̂) · SM
σ (t) · SD

σ̂ (t)
∣∣ < λLΠ ·

∫ ∞

t

SM
σ (s) · SD

σ̂ (s) ds

+ µ ·
∫ ∞

t

V1(s;hσ̂) · SM
σ (s) · SD

σ̂ (s) ds.

Observe that from (OA.2.5) and (OA.2.7) in Lemma OA.2.1, we have

∫ ∞

t

SM
σ (s) · SD

σ̂ (s) ds <
µ+ λH
λH

·
∫ ∞

t

e−2λLsds =
µ+ λH
2λLλH

· e−2λLt.

In addition, from (OA.2.8) and (OA.2.7) in Lemma OA.2.1, we have

∫ ∞

t

V1(s;hσ̂) · SM
σ (s) · SD

σ̂ (s) ds <
(µ+ λH)

2

λH(λL + λH)
·
(
Π− c

λH

)
·
∫ ∞

t

e−2λLsds

=
(µ+ λH)

2

2λLλH(λL + λH)
·
(
Π− c

λH

)
· e−2λLt.
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Then, we have

∣∣v0(t;σ,hσ̂) · SM
σ (t) · SD

σ̂ (t)
∣∣ < µ+ λH

2λLλH

[
λLΠ+

µ(µ+ λH)

λL + λH

(
Π− c

λH

)]
· e−2λLt.

Since the right-hand side of the above inequality converges to 0 as t→ ∞, (OA.2.9) holds.

In this proof, we fix the policy of the opponent at σ̂. To save on notation, we will drop the

dependency of the value and survival functions on σ̂ and the opponent’s development rate

hσ̂. Specifically, we will abuse notation and use V1(t) ≡ V1(t;hσ̂), v0(t;σ) ≡ v0(t;σ,hσ̂),

Ŝ(t) ≡ SD
σ̂ (t).

Proof of Lemma C.4 ( ⇐= ). From σ∗, we have that for all σ ∈ S and t ∈ R+

(σ∗(t)− σ(t)) · [µ · (V1(t)− v0(t;σ
∗))− λL · (Π− v0(t;σ

∗))] ≥ 0 (OA.2.10)

Suppose that v0(t;σ∗) > 0. From (HJB0), we have

0 =v′0(t;σ
∗)− c− hσ̂(t) · v0(t;σ∗) + λL · (Π− v0(t;σ

∗))

+ σ∗(t) · [µ · (V1(t)− v0(t;σ
∗))− λL · (Π− v0(t;σ

∗))] .

Then, (OA.2.10) implies that, for any σ ∈ S and t ≥ 0,

{
hDσ̂ (t) + hMσ (t)

}
· v0(t;σ∗)− v′0(t;σ

∗) ≥ λL(1− σ(t)) · Π+ µσ(t) · V1(t)− c.

Multiplying side-by-side by SM
σ (t) · SD

σ̂ (t), we have

− d

dt

[
v0(t;σ

∗) · SM
σ (t) · SD

σ̂ (t)
]
≥ [λL(1− σ(t)) · Π+ µσ(t) · V1(t)− c] · SM

σ (t) · SD
σ̂ (t)

for all t ≥ 0. Integrating this inequality from 0 to ∞ and using Lemma C.3, we have

v0(0;σ
∗) · SM

σ (0) · SD
σ̂ (0)− lim

t→∞
v0(t;σ

∗) · SM
σ (t) · SD

σ̂ (t)

≥
∫ ∞

0

[λL(1− σ(t)) · Π+ µσ(t) · V1(t)− c] · SM
σ (t) · SD

σ̂ (t)dt = U(σ, σ̂).
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Since v0(t;σ∗), SM
σ (t) and SD

σ̂ (t) are strictly positive, we have

lim
t→∞

v0(t;σ
∗) · SM

σ (t) · SD
σ̂ (t) ≥ 0.

By using this, U(σ∗, σ̂) = v0(0;σ
∗), and SM

σ (0) = SD
σ̂ (0) = 1, we obtain U(σ∗, σ̂) ≥

U(σ, σ̂).

Proof of Lemma C.4 ( =⇒ ). Suppose that σ∗ ∈ argmaxσ∈S U(σ, σ̂). From Lemma C.3,

observe that for any t ≥ 0, a firm’s expected payoff can be rewritten as follows:

U(σ, σ̂) =
∫ t

0

[λL(1− σ(s)) · Π+ µσ(s) · V1(s)− c] · SM
σ (s) · SD

σ̂ (s) ds

+ SM
σ (t) · SD

σ̂ (t) · v0(t;σ).

Now consider the following allocation policy σ̃(s) := σ∗(s)1s<t. Then, SM
σ∗(s) · SD

σ̂ (s) =

SM
σ̃ (s) ·SD

σ̂ (s) for all s ≤ t.21 In addition, by using σ∗(s) = σ̃(s) for all s < t and U(σ∗, σ̂) ≥

U(σ̃, σ̂), we have v0(t;σ∗) ≥ v0(t; σ̃).

Note that

v0(t; σ̃) =

∫ ∞

t

(λLΠ− c) · S
M
σ̃ (s)

SM
σ̃ (t)

· S
D
σ̂ (s)

SD
σ̂ (t)

ds > 0

from λLΠ > c, SM
σ̃ (s) > 0, and SD

σ̂ (s) > 0. Therefore, v0(t;σ∗) > 0 for all t ≥ 0.

Now assume that there exists σ ∈ S such that (OA.2.10) does not hold for some t ≥ 0.

Observe that V1(·;h) and v0(·;σ,h) are continuous. Since σ∗ and σ are right-continuous,

there exists ϵ > 0 such that for all s ∈ [t, t+ ϵ),

(σ∗(s)− σ(s)) · [µ · (V1(s)− v0(s;σ
∗)− λL · (Π− v0(s;σ

∗))] < 0. (OA.2.11)

Consider the following allocation policy σ∗∗ defined by:

σ∗∗(s) :=

σ∗(s), if s /∈ [t, t+ ϵ),

σ(s), if s ∈ [t, t+ ϵ).

21Note that the equality also holds at s = t, since σ∗ and σ̃ differ only at {t}, which is negligible after
integration.

12



By using a similar reformulation as in the previous case, we have

− d

ds

[
v0(s;σ

∗) · SM
σ∗∗(s) · SD

σ̂ (s)
]

≤ [λL(1− σ∗∗(s)) · Π+ µσ∗∗(s) · V1(s)− c] · SM
σ∗∗(s) · SD

σ̂ (s)

(OA.2.12)

for all s ≥ 0, and the inequality strictly holds for s ∈ [t, t + ϵ). Also note that by Lemma

OA.2.2,

lim
s→∞

v0(s;σ
∗) · SM

σ∗∗(s) · SD
σ̂ (s) = lim

s→∞
v0(s;σ

∗) · SM
σ∗(s) · SD

σ̂ (s) = 0.

By integrating (OA.2.12) from 0 to ∞, we have

U(σ∗, σ̂) = v0(0;σ
∗)

<

∫ ∞

0

[λL(1− σ∗∗(s)) · Π+ µσ∗∗(s) · V1(s)− c] · SM
σ∗∗(s) · SD

σ̂ (s) ds

= U(σ∗∗, σ̂),

which contradicts σ∗ ∈ argmaxσ∈S U(σ, σ̂). Therefore, (OA.2.10) holds for all t ≥ 0.
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