
Research or Development in Innovation Races∗

Yonggyun Kim† Francisco Poggi‡

August 11, 2024

Abstract

We introduce an innovation game in which two firms dynamically allocate resources

across two distinct research and development (R&D) paths: (i) developing an innovative

product with the currently available technology; (ii) conducting research to discover a

faster technology for posterior development. Firms’ optimal R&D strategies depend

on the information about their rivals’ progress. This creates an incentive for firms to

conceal their technological discoveries, thereby slowing down the overall pace of social

innovation.
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1 Introduction

In the highly competitive landscape of modern markets, firms face various considerations

when determining the direction of their research and development (R&D). One crucial factor

is the technology available to competitors. Although recent literature on the direction of

innovation often focuses on cases where technology is shared among all firms (e.g., Bryan and

Lemus, 2017; Hopenhayn and Squintani, 2021), in practice, much of it is acquired privately.

Consider, for example, the development of COVID-19 vaccines during the recent global

pandemic. Pharmaceutical companies relied on two alternative technologies: messenger RNA

(mRNA), as utilized by Moderna and Pfizer-BioNTech, and viral vector, pursued by Oxford-

AstraZeneca and Janssen (Johnson&Johnson). The viral vector technology was available

to most firms at the outset of COVID-19 outbreak.1 In contrast, the mRNA technology

was not in practical use before the COVID-19 outbreak. Therefore, pharmaceutical firms

needed to acquire fundamental knowledge (e.g., a method to protect the mRNA sequence

in the bloodstream during delivery) to utilize this methodology.2 The acquisition of such

technology is private.

This raises the question of how the private acquisition of technology impacts research

and development dynamics in innovation races. Moreover, it leads to another question: does

the patent system effectively incentivize firms to disclose their interim technology in pursuit

of ultimate innovation?

To address these questions, we consider a model in which two firms race to develop

an innovative product. The firm that achieves the first successful product development

receives a fixed reward, such as a temporary monopoly profit. Firms allocate their limited

resources across various pathways. One such approach involves developing the innovative

product utilizing presently available technologies. We assume that successful development
1Viral vector technology was used during recent disease outbreaks including the 2014-2016 Ebola outbreak

in West Africa. For more information, see the web page of the Centers for Disease Control and Prevention
(CDC): https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/viralvector.
html.

2The mRNA technology offers the advantage of enabling firms to develop vaccines using readily available
materials. Hence, vaccines can be developed faster compared to methods such as viral vector. For more
information, see the web page of the Centers for Disease Control and Prevention (CDC): https://www.cdc.
gov/coronavirus/2019-ncov/vaccines/different-vaccines/mrna.html.
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with an available technology requires a single breakthrough. Furthermore, companies can

allocate resources to research, which enables them to discover a faster new technology. Thus,

developing a product via this path requires two steps: first, acquiring the technology, and

second, developing the product using it.

By considering these different pathways, our model highlights the trade-off faced by

resource-constrained firms. On one hand, allocating more resources to researching a new

technology reduces the rate of short-term development, as fewer resources are available for

developing with currently available technologies. On the other hand, this approach enhances

the probability of obtaining a superior technology, thereby increasing the expected rate of

development in the future.

We examine two distinct informational settings in the model: a firm’s research progress,

represented by the set of available technologies, can either be public or private information.

In cases where firms’ research progress is public, a firm can base its choice of an R&D

path not only on its own progress but also on that of its competitors. We characterize the

unique Markov perfect equilibrium (MPE) in this case. Under certain parametric conditions,

we show that the unique MPE is the ‘fall-back’ equilibrium, wherein both firms begin by

allocating their resources to research, and once one discovers new technology, the other firm

switches to developing with existing technologies.

When research progress is private, firms cannot condition their resource allocations on the

technologies available to their competitors. Hence, the fall-back equilibrium is not feasible

in this case. Firms, however, form beliefs about technology access of competitors. These

beliefs are shaped by two key forces. First, as time passes and more resources are allocated to

research, it becomes more likely that opponents have a better technology available. Second,

the absence of successful product developments indicates that opponents are less likely to

have access to the highly effective technology.

The main challenge of equilibrium characterization lies in expressing a firm’s problem

as an optimal control problem. The solution to this problem is dependent not only on cur-

rent beliefs but also on the competitor’s future allocations, which influence the probability

of winning the race. This interdependence complicates the characterization all fixed points

of the game’s best response correspondence in the infinite-dimensional space of strategies.
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Nonetheless, by concentrating on strategies that generate monotone expected development

rates, we can derive structural properties of the best response correspondence. Specifically,

we establish a single-crossing property of the relative incentives to do research and exploit

this property to uniquely characterize the equilibrium that features monotone expected de-

velopment rates. This equilibrium presents two phases: in the first phase, firms without the

new technology conduct research and the beliefs about competitors having discovered new

technology increase over time. In the second phase, which starts at a deterministic time,

firms without the new technology partially allocate their resources to developing with current

technology and conducting research in a way such that consistent beliefs remain constant.

Lastly, we explore firms’ incentives to patent and license new technologies. In this ex-

tension, firms that obtained the new technology have the option to publicly file a patent

application. Patents are attractive because, when granted, they assign the recipient the ex-

clusive right to use the technology and the option to license the technology to a competitor

for a fee. The patent is granted with certainty to the first firm to apply for it, provided that

no other firm has previously obtained the new technology. However, if another firm obtained

the new technology before the patent application, the probability of the patent being granted

drops to 1− α.3

By patenting and licensing new technology, firms avoid duplicating efforts—meaning that

they do not waste resources on research for technology that has already been discovered—

and develop at the technological frontier. We first show that if a firm obtains a patent,

there is always a licensing fee such that both the licensor and the licensee are willing to

accept. Thus, in the spirit of Coase (1960), the efficient allocation of resources is achieved.

Moreover, we find that when the progress of firm research is public information, firms benefit

from patenting the new technology independently of the level of trade secret protection α.

When research progress is private, however, firms face a trade-off between licensing and

concealing the discovery of the new technology. By concealing the discovery, a firm can
3The parameter α captures the possibility that the patent application successfully challenged under an

argument of trade secret protection or prior commercial use. Thus, we focus on first-to-file patent sys-
tems with some level of trade secret protection, such as the protection given by the defense to infringement
based on prior commercial use (US Code §273). However, it is possible to extend our framework to capture
first-to-invent patent systems as well. For more information on trade secrets and patents, see the World In-
tellectual Property Organization’s website: https://www.wipo.int/about-ip/en/. Also, see Lobel (2013)
for examples.
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prevent the rival firm from adjusting its R&D path and, in this way, increase its probability of

winning the race. Based on this intuition, we show that when the trade secret protection level

and the stake—the size of the reward of winning the race relative to the cost associated with

the duration of the race—are sufficiently high, there is an equilibrium where firms conduct

research and conceal their discoveries of the new technology, even when patent holders have

all the bargaining power in licensing negotiations. This equilibrium behavior prevents the

spillage of new technology, which is detrimental to the overall speed of innovation.

Related Literature

This paper contributes to the innovation literature by introducing a model with two char-

acteristics. First, there are different avenues towards innovation: developing with the old

technology and doing research for the new technology. Second, one of the paths involves mul-

tiple stages: once a firm discovers the new technology, then the firm develops the innovative

product with it.

With respect to the first characteristic, there is a recent branch of the literature that

studies races where there are different routes to achieve a final objective. Das and Klein

(2020) and Akcigit and Liu (2016) study a patent race where two firms compete for a

breakthrough and there are two methods to get the breakthrough: a safe method and a

risky method. In Das and Klein (2020) the safe method has a known constant arrival

intensity while the risky method has an unknown constant arrival intensity. In Akcigit

and Liu (2016), instead, the safe method has a known payoff associated with breakthrough

arrival, while there is uncertainty about the payoff if the risky method is used. In this

paper, firms face no uncertainty about whether the innovation is feasible. Instead, they are

uncertain whether their rivals possess the new and faster technology. Another related paper

concerning this characteristic is the study by Bryan and Lemus (2017). They introduce a

general model of direction of innovation using acyclic graphs, where a node denotes a set

of available inventions in society, and an edge represents a feasible innovation path. They

assume that whenever a new invention is discovered, the first firm to invent it receives the

prize, and the access to the invention is given to all the other firms. In contrast, in our

model, interim discoveries can remain private.
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The second characteristic, multi-stage innovation, is also widely studied in the literature,

e.g., Scotchmer and Green (1990); Denicolò (2000); Green and Taylor (2016); Song and

Zhao (2021). Our paper shares the framework with these in that we use two sequential

Poisson discovery processes and ask whether a firm would patent the first discovery or not.

A feature setting apart from their works is that there is another path that only requires one

but slower breakthrough toward innovation. This feature connects our model to Carnehl and

Schneider (2022) and Kim (2022) in the sense that players can choose between a sequential

approach—which requires two breakthroughs—and a direct approach, which requires only one

breakthrough, but its riskier or slower. Our model mainly differs from theirs in that multiple

players compete by choosing between these approaches, whereas Carnehl and Schneider

(2022) considers a problem by a single decision maker and Kim (2022) studies a contracting

setup between a principal and an agent. In their studies, a key factor for a player to choose

the direct approach is a deadline that is either exogenously given or endogenously determined

to reduce moral hazard. In contrast to these, a deadline is not imposed in our model. Rather,

the race with the rival firm may induce a firm to develop with the old technology, which can

be considered as a direct approach.

Another hallmark of this paper is its consideration of ‘interim’ discoveries. Therefore, it is

naturally related to the literature on licensing of interim R&D technology, e.g., Bhattacharya

et al. (1992); d’Aspremont et al. (2000); Bhattacharya and Guriev (2006); Spiegel (2008). In

these papers it is assumed that firms already know which of them has superior technology,

i.e., the firm that will license the technology is exogenously given. Unlike in those studies, we

allow firms to choose when to license (and even allow them not to license), i.e., the licensing

decision is endogenous.

We also contribute to the literature on patent vs. secrecy by introducing a novel incentive

to conceal a firm’s discovery: hindering its rival’s strategic response.4 Previous studies mainly

focused on the limited protection power of patents. For example, the seminal article by

Horstmann et al. (1985) posits that “patent coverage may not exclude profitable imitation.”

Thus, in their framework, the main reason why a firm may choose secrecy over a patent is not
4There exists an extensive body of literature addressing both the empirical and theoretical aspects of the

patent vs. secrecy discussion. A comprehensive overview of this literature can be found in the excellent
survey paper authored by Hall et al. (2014).
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to be imitated.5 Another limitation of a patent is that it expires in a finite time. For instance,

Denicolò and Franzoni (2004) consider a framework where a patent gives the patenting firm

monopoly power only for a certain period of time (and no profit after expiration), whereas

secrecy can give indefinite monopoly power to a firm but it can be leaked or duplicated by a

rival with some probability. On the contrary, in this paper, we abstract from the restrictions

of patents and focus analysis on the potential advantages of concealment.

This paper is related to the recent studies on information disclosure in priority races,

e.g., Hopenhayn and Squintani (2016); Bobtcheff et al. (2017).6 In those papers, once a firm

makes a breakthrough, the innovation value grows as time passes until one of the firms files

a patent. Thus, firms face a tradeoff between disclosing to claim the priority and delaying in

order to grow the innovation value. On the contrary, in this paper, the value of innovation is

fixed and the discovery of the new technology only allows the firm to develop the innovative

product faster. Therefore, a firm may delay the disclosure purely to confound the rival’s

R&D decisions.

Lastly, a closely related study is the recent paper by Chatterjee et al. (2023). They

also explore a disclosure problem concerning an intermediate research finding in a two-step

project. The key distinction lies in their assumption of an exogenous payoff from disclosing

the intermediate discovery, whereas in our paper, the payoff is endogenously determined,

considering the option to develop with the old technology. As in our paper, they also find

that a high reward of the final discovery may induce firms to conceal their intermediate

discoveries, resulting in socially inefficiency.

2 Model

We consider a race between two firms, A and B, trying to develop an innovative product.

Time is continuous and infinite: t ∈ [0,∞). Firms can develop the innovative product using
5Many subsequent papers study the imitation threat and potential patent infringement, e.g., Gallini

(1992); Takalo (1998); Anton and Yao (2004); Kultti et al. (2007); Kwon (2012); Zhang (2012); Krasteva
(2014); Krasteva et al. (2020).

6There is a strand of literature on strategic disclosure, e.g., Lichtman et al. (2000); Baker and Mezzetti
(2005); Gill (2008); Baker et al. (2011); Ponce (2011). These works are well summarized in Section 3.3 of
Hall et al. (2014).

7



either old or new technology, each with a different development speed. At the outset of

the race, both firms have access to an old technology, but they can gain access to a new

technology by conducting research.

Each firm owns one unit of resources per unit of time, which can be allocated for either

conducting research to discover the new technology or developing the innovative product.

When a firm gains access to the new technology, it directs all its resources towards product

development, resulting in a development rate of λH . When Firm i does not yet possess

the new technology, it allocates a fraction σi
t ∈ [0, 1] to ‘research’ at time t. Then, 1 − σi

t

is the amount of resources that Firm i allocates to ‘develop’ the innovative product using

the old technology, and the product can be stochastically developed at rate λL · (1− σi
t). In

addition, Firm i stochastically discovers the new technology at rate σi
t·µ, where µ is a constant

parameter. Firm i can observe its own discovery of the new technology. We consider two

different settings regarding whether Firm i can observe Firm j’s research progress, whether

it has discovered the new technology or not. The parameters µ, λL, and λH are positive.

The race ends once one of the firms develops the innovative product. During the race,

firms pay a flow cost c > 0. The first firm to develop the innovative product receives a

lump-sum reward worth Π.7 Firms do not discount the future and maximize their expected

total payoff. The successful development of the innovative product is publicly observable.

Thus, firms always know whether they are still on the race. However, firms do not observe

their opponents’ resource allocations over time.

For the rest of the paper, we make the following parametric assumption:

Π− c

µ
− c

λH

> Π− c

λL

> 0. (2.1)

The first inequality states that when there is only one firm, conducting research and develop-

ing with the new technology is more efficient than developing with the old technology. Note

that this condition is equivalent to 1
µ
+ 1

λH
< 1

λL
, implying that in expectation, the product

can be developed faster by conducting research and developing with the new technology.
7 We model the race as winner-takes-all competition. This payoff structure has been commonly used in

the innovation race literature, e.g., Loury (1979); Lee and Wilde (1980); Denicolò and Franzoni (2010).
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Then, the second inequality implies that developing with the old technology is profitable.8

3 Benchmark: Constant Development Rate

As a benchmark, imagine a scenario where Firm j does not engage in the resource allocation

problem and instead its rate of development is held constant at λ. Solving this benchmark

problem for Firm i provides valuable insights for the main analysis of the paper.

In the following proposition, we show that Firm i’s resource allocation is determined by

the following threshold:

λ⋆ := µλH

(
1

λL

− 1

µ
− 1

λH

)
> 0.9 (3.1)

The proof is in Appendix A.

Proposition 3.1. Suppose that Firm j has a constant development rate λ.

(a) When λ < λ⋆, Firm i conducts research.

(b) When λ > λ⋆, Firm i develops with the old technology.

(c) When λ = λ⋆, Firm i is indifferent between conducting research and developing with

the old technology.

To illustrate the intuition behind this proposition, in Figure 1, we depict the probability

distributions of development times under Firm i’s two different policies: (i) developing with

the old technology (red dotted curve); and (ii) conducting research and then developing

with the new technology (blue solid curve). The old technology is more likely to result

in product development in a short time frame, as it requires only one breakthrough. In

contrast, development with the new technology requires two breakthroughs. Although it has

a lower expected development time, is less likely to lead to quick development. Therefore,

when competing against a fast-development rival, a firm may choose the old technology to

enhance its chances of winning the race.
8This assumption leads us to abstract away from firms’ exit decisions: the flow expected payoff of staying

in the race is at least λLΠ, which is greater than the flow cost (c). If this assumption is violated, firms
completely disregard the old technology and, therefore, there is no strategic choice of innovation path.

9Note that λ⋆ is a function of λL, µ and λH , but we suppress it to ease the notation.
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Figure 1: Probability distribution functions of a firm’s development time

4 Public Information Setting

We explore a setting where firms’ research progress is publicly available information. In this

case, the set of firms that have successfully obtained the new technology is common knowl-

edge, and we represent it as a state variable denoted by ω ∈ Ω := {{A,B}, {A}, {B}, ∅}.

We focus on equilibria in Markov strategies. Specifically, Firm i’s Markov strategy is

defined as si : Ω → [0, 1], where si(ω) denotes the amount of resources allocated by Firm

i to research in state ω. A pair of Markov strategies (sA, sB) constitutes a Markov perfect

equilibrium (MPE) if, for any given state, each firm’s strategy is the best response to the

opponent’s strategy. Next, we introduce three benchmark Markov strategies.

Definition 1. (a) The research strategy siR for Firm i fully allocates resources to research

regardless of the opponent’s progress (siR := 1{ω|i/∈ω}).10

(b) The fall-back strategy siF fully allocates resources to research if neither firm has the

new technology. If one of the firms has obtained the new technology, it fully allocates

resources to development (siF := 1{∅}).

(c) The direct-development strategy siD fully allocates the resources to development regard-

less of the state (siD := 0).

The following theorem shows that a unique MPE exists, with firms adopting one of the

benchmark Markov strategies based on parameters.
10The function 1X is an indicator function: 1X(ω) = 1 if ω ∈ X and 1X(ω) = 0 if ω /∈ X.
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Figure 2: Markov Perfect Equilibrium in the Public Information Setting

Theorem 1. Suppose that firms’ research progress is public information. Then, the Markov

perfect equilibrium is uniquely characterized as follows:

(a) if λ⋆ > λH , both firms play their respective research strategies (sAR, s
B
R);

(b) if λH > λ⋆ > λL, both firms play the fall-back strategies (sAF , s
B
F );

(c) if λL > λ⋆, both firms play the direct-development strategies (sAD, s
B
D).

This result primarily stems from Proposition 3.1. First, assume that λ⋆ > λH . Note that

the development rate never exceeds λH for any state and strategy, thus, it is always lower

than λ⋆. Referring to (a) in Proposition 3.1, we can infer that firms would conduct research

regardless of the rival’s strategy. Therefore, both firms employing the research strategy

would constitute an equilibrium.

Next, suppose that λL > λ⋆. If a firm develops with the old technology, its development

rate is λL, which is greater than λ⋆. Then, by (b) of Proposition 3.1, the rival firm would

also develop with the old technology. Therefore, both firms adopting the direct-development

strategy would constitute an equilibrium.

Last, assume that λH > λ⋆ > λL. Consider the case where only Firm j has discovered

the new technology, i.e., ω = {j}. Then, Firm j will develop with the new technology, i.e.,

the development rate of Firm j is λH , which is higher than λ⋆. Then, by (b) of Proposition

3.1, Firm i develops with the old technology. Since λ⋆ > λL, the direct-development strategy
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cannot constitute an equilibrium. Thus, among the benchmark strategies, the fall-back

strategy is the only candidate for an equilibrium strategy under this parametric region, and

it indeed is.

It is worth noting that we do not limit our analysis solely to symmetric equilibrium;

instead, symmetry emerges as a result of our analysis. Figure 2 illustrates the relevant

parametric regions in the above theorem.

An intuitive way of interpreting our result is to fix λL and λH and perform a comparative

statics with respect to the research rate µ. Then, in Figure 2, given an x coordinate, the y

coordinate decreases as µ increases. Specifically, let µ, µL and µH be the solutions to the

equations λ⋆ = 0, λ⋆ = λL and λ⋆ = λH , respectively. Then, Theorem 1 can be rewritten as

follows.

Corollary 1. Under the public information setting, the unique MPE is characterized as

follows: (i) when the rate of research is high (µ > µH), both firms play their respective

research strategies; (ii) when the rate of research is intermediate (µH > µ > µL), both firms

play the fall-back strategies; and (iii) when the rate of research is low (µL > µ > µ), both

firms play the direct-development strategies.

5 Private Information Setting

In this section, we consider the private information framework, in which firms do not observe

whether their opponents have the new technology. In this setting, as before, a firm with the

new technology fully allocates the resources to development. However, a firm without the new

technology can only condition its resource allocation on the calendar time t. An allocation

policy is a right-continuous function σ : R+ → [0, 1] that represents the research allocation

at a given time, conditional on not having obtained the new technology. We denote S as the

set of allocation policies.

5.1 Preliminaries

We begin by laying out some essential elements for the equilibrium characterization.
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New Technology Access and Development Rate Let pσ be the probability that a

firm following allocation σ obtains the new technology by time t, conditional on not having

developed the product yet.11 In other words, when Firm A is committed to the policy σ,

Firm B’s belief that Firm A has the access for the new technology at time t is pσ(t). The

following proposition characterizes, the evolution of pσ over time for any σ ∈ S.

Proposition 5.1. For any allocation policy σ ∈ S, the conditional probability pσ(t) satisfies

the initial condition pσ(0) = 0 and evolves according to the differential equation ṗσ(t) =

δ(pσ(t),σ(t)), where δ : [0, 1]× [0, 1] → R is given by:

δ(p, σ) := µ · σ · (1− p)︸ ︷︷ ︸
DE

− (λH − (1− σ) · λL) · p · (1− p)︸ ︷︷ ︸
SRE

. (5.1)

The function δ highlights two distinct effects of the resource allocation σ(t) on the evo-

lution of pσ, captured by the two terms in (5.1). First, if the firm does not have the new

technology—which happens with probability (1 − pσ(t))—the new technology is discovered

at rate µ ·σ(t). We dub the effect of this arrival rate the duration effect (DE). On the other

hand, the lack of development success indicates that it is less likely that the firm has the new

technology. This second effect, which we dub the still-in-the-race effect (SRE), is reflected

in the second term.12 Notice that the SRE is proportional to λH − (1 − σ(t))λL, which is

the difference in the rate of development of the firm with and without the new technology.

The access to the new technology and the allocation of resources determine the develop-

ment rate of the firm. We can define the development rate of a policy as follows.

Definition 2. Given a policy σ ∈ S, the associated development rate function hσ is defined

as hσ(t) = ξ(pσ(t),σ(t)) where ξ : [0, 1]× [0, 1] → R is given by:

ξ(p, σ) := p · λH + (1− p) · (1− σ) · λL. (5.2)

The first term of (5.2) captures that a firm with the new technology develops at rate λH .
11See Appendix C.1 for the formal definition of pσ.
12Similar types of belief updating can be found in the strategic experimentation literature, e.g., Keller

et al. (2005); Bonatti and Hörner (2011). The main difference is that, in that literature, the agents form
beliefs about whether a project is good or bad. In this paper, on the other hand, firms only form beliefs
about the technology access of the rival.
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If the firm does not have the new technology, they only develop at rate (1− σ(t))λL.

Expected Payoffs and Solution Concept Given a firm and its rival’s allocation policies

σ and σ̂, we can express the firm’s expected payoff in terms of the associated development

rates, hσ and hσ̂, as follows:

U(σ, σ̂) =
∫ ∞

0

e−
∫ t
0 {hσ(s)+hσ̂(s)} ds · (hσ(t) · Π− c) dt. (5.3)

Intuitively, the exponential term captures the probability that no firm has developed the

innovative product by time t, i.e. the probability that the race is still ongoing. In that case,

the firm captures an expected flow payoff equal to hσ(t)·Π, due to the potential development

of the innovative product, while incurring the flow cost c.

As in the literature on dynamic games with unobservable actions (e.g., Bonatti and

Hörner, 2011), we aim to characterize the Nash equilibria (NE) in this game. A unique

feature that makes solving the NE challenging in this model is the possibility of a non-

monotonic belief. For instance, a firm that has been conducting research may suddenly

allocate all the resources to direct development (σ(t) = 0), making (5.1) negative. To

overcome this challenge, we focus on the NE with the following property.

Definition 3. An allocation policy σ ∈ S exhibits the monotone development rate (MDR)

property if hσ is weakly increasing. An allocation policy profile (σA,σB) is a Nash equilibrium

with monotone development (MDNE) if (i) (σA,σB) is a Nash equilibrium; and (ii) σA and

σB have the MDR.

5.2 Equilibrium Chacterization

We begin by defining a pair consisting of a probability and a resource allocation that can

emerge in an MDNE.

Definition 4. A pair of a probability and an allocation, (p⋆, σ⋆) ∈ (0, 1)2, is called a steady

state if (i) ξ(p⋆, σ⋆) = λ⋆; and (ii) δ(p⋆, σ⋆) = 0.

Under the steady state, the belief is stationary (δ(p⋆, σ⋆) = 0) and the development rate

is λ⋆, implying that firms are indifferent between conducting research and developing with
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the old technology (Proposition 3.1 (c)). Thus, once both firms reach the steady state belief

p⋆, allocating σ⋆ onward can be part of an MDNE. The following proposition provides a

condition under which the steady state exists.

Proposition 5.2. There exists a steady state (p⋆, σ⋆) if and only if λ⋆ ∈ (λL,min{λH , µ}).

Now we provide the characterization of the MDNE.

Theorem 2. Suppose that firms’ research progress is private information. Then, an MDNE

exists and is uniquely characterized as follows:

(a) if λ⋆ < λL, firms play direct-development policies: σA = σB = 0;

(b) if λ⋆ > min{λH , µ}, firms play research policies: σA = σB = 1;

(c) if λ⋆ ∈ (λL,min{λH , µ}), firms play stationary fall-back policies: σA = σB = σSF ,

which is defined as follows: for some T⋆, (i) σSF (t) = 1 if t < T⋆; (ii) σSF (t) = σ⋆ if

t ≥ T⋆. Moreover, pσSF (t) = p⋆ for all t ≥ T⋆.

We provide the proof sketch in Appendix C.3, and the formal proof is in Online Appendix.

As in the public information setting, symmetry is obtained as a result.

When the parameters are such that λ⋆ > λH or λ⋆ < λL, we know from Theorem 1,

specifically from points (a) and (c), that firms do not tailor their allocation to the oppo-

nent’s progress even when this information is publicly available. Thus, under the private

information setting, it is intuitive that the firms adopt the same equilibrium allocations as

in the public information setting for those regions.

The more interesting case occurs when λ⋆ ∈ (λL, λH). As shown in Theorem 1 (b), for

these parameters, firms employ the fall-back strategy under the public information setting.

However, this strategy is no longer feasible under the private information setting, as it

requires adjusting resource allocations based on information about the rival’s access to the

new technology. Despite this infeasibility, the optimality of the fall-back strategy under the

public information setting suggests that if a firm believes that the rival likely has the new

technology, it may allocate more resources to developing with the old technology.
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Figure 3: Nash Equilibrium with Monotone Development in the Private Information Setting

Based on these insights, our theorem shows that when the steady state exists (λ⋆ ∈

(λL,min{µ, λH})), both firms conduct research until their beliefs reach the steady state

probability p⋆. Then, both firms implement the steady state allocation σ⋆ from that point

on, making the belief stationary at p⋆. Last, if µ < λ⋆ < λH , the still-in-the-race effect

prevents the belief from exceeding a certain level.13 This keeps the development rate lower

than λ⋆, thus, by Proposition 3.1, it is optimal for both firms to conduct research indefinitely.

5.3 Expected Development Times

Now that we have characterized the equilibrium allocations, we can compare how the ex-

pected development times differ across the different settings.14 Figure 4 illustrates how the

expected development times change with respect to the research rate µ under the first-best

scenario, the public information setting, and the private information setting.

Consider the first-best scenario where the planner allocates firms’ resources and obtains

the property right for the new technology upon research success of either firm. The planner

directs firms to conduct research, and once a firm discovers the new technology, the planner

shares it with another firm. Both firms then begin developing the product with the new

technology. Thus, the expected completion time is 1
2µ

+ 1
2λH

.

13Specifically, it cannot exceed µ/λH . See Lemma OA.2.1.
14Since there is no discounting and the reward will be received by one of the firms, having a lower expected

development time is equivalent to having a higher expected total surplus.
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Figure 4: Expected Development Times

Under the public information setting, the expected development time is determined by

the equilibrium strategy in Corollary 1. Since the research success of a firm is not spilled

over to another firm, the expected development time is significantly longer compared to the

first-best scenario.

The expected development time under the private information setting differs from that

under the public information setting only when the research rate is intermediate (µ ∈

(µL, µH), or equivalently, λ⋆ ∈ (λL, λH)). In this region, as shown by Theorem 2, firms

employ stationary fall-back or research policy. This results in a longer expected develop-

ment time compared to the fall-back equilibrium under the public information setting. This

is because the lack of information about the rival’s progress hampers the firms’ ability to

effectively choose the appropriate R&D approach.

6 Patent, License and Trade Secret

In this section, we extend the model by allowing the firms to patent and license the new

technology, namely the patent game. The main components of the model remain the same

as in the baseline model, with one key difference: once a firm discovers the new technology,

it has the option to apply for a patent. If the patent is granted, the patent holder can license

the new technology to the rival in exchange for a fee.
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for a patent

Firm i owns a patent,
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Firm j develops w/ old tech.

Firm j does not have
the new technology

Firm j already has
the new technology

Prob. 1− α

Prob. αReject Accept

Figure 5: Timing of the patent game after the patent application

When a firm obtains the new technology, it can choose to apply for a patent or not.15

The probability of the patent being granted depends on the opponent’s research progress. If

the opponent does not possess the new technology at the time of the application, the patent

is granted with certainty. If the opponent does have the new technology at the time of

application, it contests the patent, and the patent is granted with probability 1− α ∈ [0, 1].

In other words, the opponent’s new technology is protected with probability α. Thus, α

captures the level of trade secret protection. When the patent is not granted, both firms

have the right to use the new technology.

When the patent is granted, the patent holder offers a take-it-or-leave-it (TIOLI) licensing

fee to the opponent. If the offer is accepted, the opponent pays the licensing fee, and both

firms continue the race to develop the product using the new technology. If the offer is

rejected, only the patent holder can use the new technology, while the opponent continues

developing the product using the old technology. The subgame after the patent application

is summarized in Figure 5.16

15To simplify the discussion, we assume that a firm can only apply for a patent right after the discovery
of the new technology. In practice, it is possible to delay the patent application, e.g., a firm can protect the
new technology by trade secret for six months, and then apply for a patent.

16This setup can also be interpreted in the context of patent infringement. When Firm i obtains the
patent for the new technology, Firm j can decide whether to infringe the patent and use the new technology
to develop the product or to utilize the old technology. If the patent is infringed, Firm i brings the case to

18



6.1 Optimal Licensing Fee

We begin by deriving the optimal licensing fee offer. Consider the subgame where Firm i

has obtained the patent for the new technology. If the offer is accepted, both firms develop

with the new technology, resulting in each firm obtaining the expected continuation payoff

of V11 := λHΠ−c
2λH

. If the offer is rejected, Firm i develops with the new technology and

Firm j develops with the old technology, obtaining the expected continuation payoffs of

V10 := λHΠ−c
λH+λL

and V01 := λLΠ−c
λH+λL

respectively. Thus, Firm j accepts the licensing fee offer l

iff V11 − l ≥ V01. The next proposition characterizes the optimal licensing fee offered by the

patent holder.

Proposition 6.1. When that Firm i has obtained the patent for the new technology, it offers

a licensing fee

l∗ := V11 − V01 =
λH − λL

λH + λL

· λHΠ+ c

2λH

(6.1)

to Firm j, and Firm j accepts the offer. Then, Firm i’s expected continuation payoff is

ULicensor = V11 + l∗ and Firm j’s expected continuation payoff is ULicensee = V11 − l∗ = V01.

Intuitively, the total surplus when the two firms compete with different technologies

is V10 + V01 = Π − 2c
λL+λH

, which is lower than that under licensing, 2 · V11. The extra

surplus represents the savings in costs associated with a shorter development time that can

be achieved by allowing Firm j to use the new technology rather than the old technology.

Since the patent holder has all the bargaining power in the licensing negotiations, it is able to

capture the entire extra surplus that is generated through licensing. In other words, once the

property right is given via the patent, the efficient allocation is achieved á la Coase (1960).

Patent Application Given these expected payoffs after patent application, consider Firm

i’s expected payoff from applying for a patent. After the patent application, both firms will

have access to the new technology. If the patent is granted, Firm j will license it from Firm

i as in Proposition 6.1; and if the patent is not granted, it must be the case that Firm j

already possesses the new technology.

court, resulting in Firm j being ordered to compensate Firm i with a fee equal to the licensing fee.
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Let p be the probability that Firm j has the new technology. Then, the probability that

the license fee is paid is 1 − α · p. Thus, the expected continuation payoff of applying for

a patent is V11 + (1 − α · p) · l∗. If firm i decides not to apply for a patent, the expected

continuation payoff depends on the allocation policy and patenting decisions of the opponent.

6.2 First-Best Implementation

In this section, we identify parametric conditions under which the first-best outcome is

implemented in the patent games under the public and the private information settings,

respectively. As described in Section 5.3, the first-best outcome occurs when both firms

conduct research, and once one of the firms discovers the new technology, it should be

shared with the other firm through patenting and licensing.

The Patent Game under Public Information When research progress is public in-

formation, there is no downside to applying for a patent because the only advantage of

not patenting is to keep research progress concealed (Proposition D.1). Therefore, on the

equilibrium path, the patent application is never challenged.

Given this and the optimal licensing fee from Proposition 6.1, we can determine the

continuation payoffs of each firm after the discovery of the new technology. Using these

continuation payoffs, we can analyze the equilibrium resource allocations prior to the new

technology discovery. The following proposition identifies the condition that the first-best

outcome can be implemented. We present the full equilibrium characterization in Appendix

D.2.1.

Proposition 6.2. Suppose that firms’ research progress is public information. There exists

π̃1 > 1 such that the first-best outcome can be implemented in the equilibrium if and only if

(i) λ⋆ > λL; or (ii) λL > λ⋆ >
λHλL

2λH+λL
and π̃1 > π := λLΠ/c.

Intuitively, the possibility of patenting increases the incentives to conduct research. Re-

call that when λ⋆ > λL, firms begin by conducting research in both public and private

information settings without patenting. Therefore, firms will continue conducting research

in this parametric region when patenting the new technology is possible (Part (i)).
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When λ⋆ < λL, recall that both firms directly develop the product using the old technol-

ogy in the game without patents. Even in the patent game, the incentive to directly develop

the product is strong especially when the stake of winning the race, π, is high enough. There-

fore, the first-best outcome can be implemented when π is relatively small (Part (ii)). It

is worth highlighting that, since patents are never challenged on the equilibrium path, the

equilibrium research allocations are independent of the level of trade secret protection α.

The Patent Game under Private Information Next, assume that firms’ research

progress is private information. If both firms conduct research and apply for patents upon

discovering the new technology, we call it an efficient patent equilibrium. On the equilibrium

path, both firms behave as if research progress is public information. Therefore, the condition

described in Proposition 6.2 is necessary for the existence of an efficient patent equilibrium.

In addition to this condition, we need another condition to incentivize a firm to disclose

that it has discovered the new technology. The following lemma characterizes this condition.

Lemma 6.1. Suppose that firms’ research progress is private information, and Firm j’s

resource allocation strategy is to do research indefinitely (σt = 1 for all t ≥ 0) and apply for

a patent once the new technology is discovered. When Firm i discovers the new technology,

it applies for a patent if and only if

l∗

V11

>
λH

λH + µ(2− α)
. (6.2)

This result is intuitive in that a firm is willing to apply for a patent if and only if the

licensing fee l∗ is attractive enough relative to the firm’s expected payoff after licensing V11.

Observe that, as α increases, (6.2) becomes more difficult to hold. This result aligns with

intuition: as the trade secret protection level increases, firms are less inclined to apply for

patents. Also note that from (6.1) and π = λLΠ/c, we have

l∗

V11

=
λH − λL

λH + λL

· λHΠ+ c

λHΠ− c
=

λH − λL

λH + λL

· λHπ + λL

λHπ − λL

.

Therefore, the left hand side of (6.2) is decreasing in π, i.e., as π increases, (6.2) becomes

more difficult to hold. Intuitively, since a part of the licensing fee comes from the saving of
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the cost, it does not increase proportionally with V11. Equipped with this result, we can pin

down the parametric conditions under which the efficient patent equilibrium exists.

Proposition 6.3. Suppose that firms’ research progress is private information. The effi-

cient patent equilibrium exists if and only if the condition in Proposition 6.2 and one of the

following conditions hold: (i) α ≤ α̂ := 2λ⋆

λH+λ⋆
; or (ii) α > α̂ and

π < π̂(α) := 1 +
λL + λH

λH

· 2− α

α− α̂
. (6.3)

Note that when λ⋆ > λH , the efficient patent equilibrium exists, since α̂ > 1. In this

case, firms conduct research regardless of their rivals’ progress. Therefore, when a firm

discovers the new technology, there is no informational advantage to concealing it. Instead,

firms can benefit from licensing the new technology to the rival firms, allowing the efficient

patent equilibrium to be attained. On the other hand, when λ⋆ < λH , it is possible that

the efficient patent equilibrium does not exist. To illustrate this, consider a scenario where

Firm A discovers the new technology. If Firm A patents and licenses the new technology,

the licensing fee is determined based on the assumption that, if the offer is rejected, Firm

B will develop with the old technology. Recall that, in the case of λ⋆ < λH , developing

with the old technology is the best response for Firm B when it knows that the rival has

the new technology (Proposition 3.1). Therefore, by applying for a patent, Firm A provides

an opportunity for Firm B to exercise its best response. In contrast, if Firm A keeps the

discovery secret, it may induce Firm B to make suboptimal choices in R&D strategies, e.g.,

Firm B may squander its time in conducting research for the new technology, which Firm A

already possesses. This trade-off creates the possibility that the efficient patent equilibrium

does not exist.

6.3 Concealment Equilibrium

Now we consider another extreme equilibrium candidate in the patent game under the private

information setting: both firms do not apply for patents, namely a concealment equilibrium.

On the equilibrium path of the concealment equilibrium, firms do not observe rivals’ re-

search progress. Therefore, the equilibrium outcome corresponds to that under the private
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information setting without patenting.

To simplify the discussion, we focus on the parametric region where λH > λ⋆ > µ. Recall

that in this region, both firms employ the fall-back strategy under the public information

setting (Theorem 1 (b)), whereas they conduct research under the private information setting

(Theorem 2 (b)). The following proposition shows that the concealment equilibrium exists

when both the trade secret protection level and the stake of winning the race are high enough.

Proposition 6.4. Suppose that firms’ research progress is private information and λH >

λ⋆ > µ. There exists α̃ > α̂ and π̃(α) ≥ π̂(α) such that the concealment equilibrium exists if

and only if α > α̃ and π > π̃(α).

Intuitively, a substantial stake of winning the race and strong trade secret protection

increase firms’ incentives to conceal their discovery of the new technology. Instead of re-

ceiving the licensing fee after patenting—which involves another round of competition to

develop the product with the new technology—firms would rather let their rivals squander

time researching for the technology they already possess. Specifically, the licensing fee does

not fully internalize the decreased chance of winning the race. This is because once Firm i

applies for a patent, Firm j adjusts the R&D strategy based on the information that Firm

i possesses the new technology, implying that Firm j’s outside option is changed after the

disclosure.

This concealment incentive slows down the social speed of development in two ways: (i)

the discovery of the new technology is not shared with another firm, as described by the gap

between the black and the blue curves in Figure 4; (ii) due to the lack of information, firms

cannot appropriately adjust the R&D strategies, as described by the gap between the blue

and the red dotted curves in Figure 4.

Last, note that the parametric regions of (α, π) in Proposition 6.3 and 6.4 do not overlap;

that is, there exists an intermediate region where neither efficient patent equilibrium nor

concealment equilibrium exists. In this region, as in Chatterjee et al. (2023), firms would

engage in partial disclosure—applying for patents at some rate.

23



7 Discussion

In this article, we investigate how information about firms’ research progress—particularly

regarding the acquisition of the new technology that accelerates innovation—influences R&D

dynamics by introducing an innovation race model with multiple paths. By extending the

model to include the option to patent, we also study when the patent system is effective in

promoting the social speed of innovation.

We highlight that the private acquisition of the new technology affects the innovation

speed in two key ways. Firstly, it prevents the new technology from being shared with other

firms. Secondly, the lack of information about research progress hinders firms’ ability to

adapt their R&D strategies effectively.

To counteract this slowdown, we propose implementing a patent system with an option

to license. When the new technology is patented and licensed, the first-best outcome can

be achieved. The socially optimal outcome is realized when firms’ research progress is pub-

licly observable, unless the direct development with the old technology is attractive enough

(Proposition 6.2 (i)).

On the contrary, with private information about their progress, firms may choose to

conceal their discovery of the new technology if the right to use it is well protected by trade

secret laws and the stake from winning the race is high (Proposition 6.4). This concealment

delays the innovation not only because the discovered new technology cannot be used by

competing firms, but also because competing firms waste time independently discovering the

new technology. Proposition 6.3 suggests two potential policies to resolve this inefficiency.

One approach is to reduce the trade secret protection level as this would discourage firms

from concealing their discoveries. Another is to decrease the stake of winning the race as

this would make licensing more appealing. A caveat of this policy is that lowering the stake

too much could discourage firms from participating in the innovation races in the first place.

We can also modify the model to reflect the first-to-invest patent system. For instance,

when Firm i applies for a patent and Firm j contests it, with probability α, the firm that

discovered the new technology earlier obtains the patent, and with probability 1−α, Firm i

obtains the patent. Then, the first-to-invent system can be represented by α = 0, while the
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first-to-file system can be represented by α = 1. With this modification, firms have more

incentives to conceal their discoveries as they now have a chance of becoming a patentee by

contesting the other firms’ patent application. Nevertheless, when α is low enough, these

incentives cannot outweigh the advantage of licensing the new technology. Therefore, the

socially efficient outcome can also be attained by decreasing α.

There are many avenues open for further research. For example, we assume that there

are exogenously given two paths towards innovation, and one of the paths requires two

breakthroughs. However, in practice, there are numerous ways to innovate, and it often

requires more than two breakthroughs. We also assume that a firm’s R&D resources are

fixed over time, but we could also allow firms to endogenously choose how much effort to put

into each point in time. Finally, we assume the contest structure is given by the winner-takes-

all competition, but we might consider a contest design problem. We leave these intriguing

questions and others for future work.
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Appendix

A Proofs for Benchmark

A.1 Proof of Proposition 3.1

Proof of Proposition 3.1 . Suppose that Firm i has already discovered the new technology.

Then, Firm i develops with rate λH and Firm j develops with the rate λ. Firm i’s proba-

bility of winning the race is λH

λH+λ
and the expected duration of the remaining race is 1

λH+λ
.

Therefore, Firm i’s expected continuation payoff is given by

V1
λ :=

λH

λH + λ
· Π− 1

λH + λ
· c = λHΠ− c

λH + λ
. (A.1)

Now suppose that Firm i has yet to discover the new technology. Consider constant

research allocation strategies, which allocate a fixed amount of resources to research until

either the new technology is discovered or the race ends, i.e., for some x ∈ [0, 1], σi
t = x for

all t ≥ 0.17 When Firm i allocates x amount of resources towards research, there are three

potential outcomes: (i) Firm i develops the product with the old technology at rate λL(1−x);

(ii) Firm i discovers the new technology at rate µx; (iii) Firm j develops the product at rate

λ. In the first scenario, Firm i wins the race and receives Π, and the probability of this event

happening is λL(1−x)
λL(1−x)+µx+λ

. In the second scenario, Firm i enters the post-research phase,

and its expected payoff is V1
λ. The probability of this event occurring is µx

λL(1−x)+µx+λ
. In

the third scenario, Firm i receives nothing, and the probability of this event happening is
λ

λL(1−x)+µx+λ
. The expected remaining duration of the game is 1

λL(1−x)+µx+λ
. Therefore, Firm

i’s expected payoff is given by

u(x) :=
λL(1− x) · Π+ µx · V1

λ − c

λL(1− x) + µx+ λ
. (A.2)

17In Online Appendix OA.1.3, we show that it is without loss to focus on these strategies (Lemma OA.1.2).
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After taking the first derivative of u, with some algebra, we can derive that

u′(x) =
λL(λΠ+ c)(λ⋆ − λ)

(λ+ λH)(λ+ (1− x)λL + xµ)2
. (A.3)

Therefore, from x ∈ [0, 1], x = 1 is optimal when λ < λ⋆, x = 0 is optimal when λ > λ⋆, and

any x ∈ [0, 1] is optimal when λ = λ⋆.

B Proofs for the Public Information Setting

B.1 Proof of Theorem 1

We prove Theorem 1 using a sequence of Lemmas which we separately prove in Section B.2.

Moreover, we restrict ourselves to Markov deviations, shown to be sufficient to do in Lemma

OA.1.4 of Online Appendix OA.1.4.

Given a Markov strategy profile of the firms, we can define U i
ω as the continuation payoff

of Firm i in state ω. Next, we provide some intuition for the proof of Theorem 1 by splitting

the problem of the firms in two: On one hand, we solve the problem of the firms before any

research progress has been made (and fixing the continuation payoffs). On the other hand,

we compute the best responses of the firms after one of them obtains the new technology,

and therefore the equilibrium continuation payoffs. Finally, by plugging these continuation

payoffs into the problem of the firms at the initial state, we prove the theorem.

Best Responses under no New Technology Discovery We first consider the case

where neither firm has discovered the new technology, i.e., ω = ∅. The conventional approach

is to solve the problem with backward induction. However, in order to facilitate the analysis

in various extensions, we present the problem under the state ω = ∅ in a general manner by

treating the continuation payoffs U i
{i} and U i

{j} as exogenous values.

When Firm i and j play s(∅) = x and ŝ(∅) = y, Firm i’s expected payoff at the state ∅ is

u0(x, y) :=
xµU i

{i} + (1− x)λLΠ+ yµU i
{j} − c

xµ+ (1− x)λL + yµ+ (1− y)λL

. (B.1)
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Define ∆y := u0(1, y)− u0(0, y).

Lemma B.1. The following equation holds:

∂u0

∂x
= C(x, y) · {λL ·∆0 · (1− y) + µ ·∆1 · y} , (B.2)

where

C(x, y) = 2(λL + µ)

{µx+ λL(1− x) + µy + λL(1− y)}2
> 0.

The following lemma characterizes the equilibrium allocations at state ∅ in any MPE.

Lemma B.2. The equilibrium allocations at state ∅ are characterized as follows:

(a) when ∆0,∆1 > 0, both firms do research, i.e., (sA(∅), sB(∅)) = (1, 1);

(b) when ∆0,∆1 < 0, both firms develop with the old technology, i.e., (sA(∅), sB(∅)) =

(0, 0).

In scenarios where ∆0 and ∆1 share the same sign, the best response is independent of

the opponent’s resource allocation. Specifically, when both ∆0 and ∆1 are positive, it is

optimal to assign all resources to research. Conversely, when both ∆0 and ∆1 are negative,

it is optimal to develop with the old technology.

Best Responses under New Technology Discovery We now consider the cases where

at least one of the firms has discovered the new technology.

When both firms have discovered the new technology (ω = {i, j}), they will develop

with the new technology and their expected payoffs are U i
{i,j} = U j

{i,j} = V11 := λHΠ−c
2λH

.

Next, suppose that only one of the firms, say Firm i, has discovered the new technology,

i.e., ω = {i}. In this case, Firm i develops the product at rate λH with the new technology.

Then, we can derive the continuation values by applying Proposition 3.1:

(i) if λ⋆ > λH , Firm j keeps conducting research:

U i
{i} = U j

{j} =
λHΠ+ µV11 − c

µ+ λH

=
µ+ 2λH

µ+ λH

V11, U i
{j} = U j

{i} =
µV11 − c

µ+ λH

, (B.3)
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(ii) if λ⋆ < λH , Firm j develops with the old technology:

U i
{i} = U j

{j} = VH :=
λHΠ− c

λL + λH

, U i
{j} = U j

{i} = VL :=
λLΠ− c

λL + λH

. (B.4)

Equilibrium Characterization Now that we have derived the continuation values, we

can compute ∆0 and ∆1.

Lemma B.3. When λ⋆ > λH , the following equations hold:

∆0 =
λH · λ⋆ · (λLΠ+ c) + µ · (λ⋆ − λH) · c

2λH(λH + µ)(λL + µ)
, (B.5)

∆1 =
λL · {λH · λ⋆ · (µΠ+ c) + µ · (λ⋆ − λH) · c}

2µλH(λH + µ)(λL + µ)
. (B.6)

Lemma B.4. When λ⋆ < λH , the following equations hold:

∆0 =
(λLΠ+ c) · (λ⋆ − λL)

2(λL + µ)(λL + λH)
, (B.7)

∆1 =
(µΠ+ c) · λL · (λ⋆ − λL)

2µ(λL + µ)(λL + λH)
. (B.8)

We can finalize the proof of Theorem 1 by using the above lemmas and Lemma B.2.

Proof of Theorem 1. First, when λ⋆ > λH , by Lemma B.3, we have that ∆0,∆1 > 0. By

applying Lemma B.2 (a), both firms do research at the state ∅. Then, when one of the firms,

say Firm j, succeeds in research, by Proposition 3.1 (a), Firm i will keep doing research.

Therefore, the unique MPE is for firms to follow the research strategy (Theorem 1 (a)).

When λ⋆ ∈ (λL, λH), (B.7) and (B.8) imply that ∆0 and ∆1 are positive. Thus, by

Lemma B.2 (a), both firms do research at the state ∅. Then, when one of the firms, say Firm

j, succeeds in research, by Proposition 3.1 (b), Firm i will switch to develop with the old

technology. Therefore, the unique MPE is for firms to follow the fall-back strategy (Theorem

1 (b)).

Last, when λ⋆ < λL, we can see that ∆0 and ∆1 are negative. Then, by Lemma B.2 (b),

both firms develop with the old technology at the state ∅. Additionally, even if a firm happens

to succeed in research, the other firm will keep developing with the old technology due to
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Proposition 3.1 (b). Thus, the unique MPE is for firms to employ the direct-development

strategy (Theorem 1 (c)).

B.2 Proofs of Lemmas

Proof of Lemma B.1. Observe that

∆0 =
µU i

{i} − c

µ+ λL

− λLΠ− c

2λL

, ∆1 =
µ(U i

{i} + U i
{j})− c

2µ
−

λLΠ+ µU i
{j} − c

λL + µ
.

Thus, we have

2(λL + µ)λL ·∆0 =2λLµU
i
{i} − λL(λL + µ)Π + (µ− λL)c, (B.9)

2(λL + µ)µ ·∆1 =(λL + µ)µU i
{i} − (µ− λL)µU

i
{j} − 2λLµΠ+ (µ− λL)c, (B.10)

and

2(λL + µ)µ ·∆1 − 2(λL + µ)λL ·∆0 = (µ− λL)
(
µU i

{i} − µU i
{j} − λLΠ

)
.

Also note that

∂u0

∂x
=

NUM0

{µx+ λL(1− x) + µy + λL(1− y)}2

where

NUM0 =(µU i
{i} − λLΠ) · (µx+ λL(1− x) + µy + λL(1− y))

− (xµU i
{i} + (1− x)λLΠ+ yµU i

{j} − c) · (µ− λL).

With some algebra, we can show that

NUM0 =2(λL + µ)λL ·∆0 + (2(λL + µ)µ ·∆1 − 2(λL + µ)λL ·∆0) · y.

By plugging this in, we can show that (B.2) holds.

Proof of Lemma B.2. (a) When ∆0,∆1 > 0, from (B.2), ∂u0

∂x
> 0 for all y ∈ [0, 1], i.e.,
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x = 1 is optimal. Thus, both firms play s(∅) = 1 in any MPE.

(b) When ∆0,∆1 < 0, from (B.2), ∂u0

∂x
< 0 for all y ∈ [0, 1], i.e., x = 0 is optimal. Thus,

both firms play s(∅) = 0 in any MPE.

Proof of Lemma B.3. By plugging (B.3) into (B.9), with some algebra, we have

2(λL + µ)λL ·∆0 =
λHµ− λLλH − µλL

λH + µ
· (λLΠ+ c) +

µ (λHµ− λLλH − µλL − λLλH)

λH(λH + µ)
· c.

By using (3.1), we have

2(λL + µ)λL ·∆0 =
λL

λH(λH + µ)
· [λH · λ⋆ · (λLΠ+ c) + µ · (λ⋆ − λH) · c] .

Then, by dividing both sides by 2(λL + µ)λL, we can show that (B.5) holds.

Next, by plugging (B.3) into (B.10),

2(λL + µ)µ ·∆1 =
λHµ− λLλH − µλL

λH + µ
· (µΠ+ c) +

µ(λHµ− λLλH − µλL − λLλH)

λH(λH + µ)
· c.

By using (3.1), we have

2(λL + µ)µ ·∆1 =
λL

λH(λH + µ)
· [λH · λ⋆ · (µΠ+ c) + µ · (λ⋆ − λH) · c]

Then, by dividing both sides by 2(λL + µ)µ, we can show that (B.6) holds.

Proof of Lemma B.4. By plugging (B.4) into (B.9),

2(λL + µ)λL ·∆0 =
λLΠ+ c

λL + λH

·
{
λHµ− λLλH − µλL − λ2

L

}
By using (3.1), we have

2(λL + µ)λL ·∆0 =
(λLΠ+ c) · λL · (λ⋆ − λL)

λL + λH

.

Then, by dividing both sides by 2(λL + µ)λL, we can show that (B.7) holds.
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Next, by plugging (B.4) into (B.10),

2(λL + µ)µ ·∆1 =
µΠ+ c

λL + λH

·
{
λHµ− λLλH − µλL − λ2

L

}
.

By using (3.1), we have

2(λL + µ)µ ·∆1 =
(µΠ+ c) · λL · (λ⋆ − λL)

λL + λH

.

Then, by dividing both sides by 2(λL + µ)µ, we can show that (B.6) holds.

C Proofs for the Private Information Setting

C.1 Formal Definition of pσ

Given an allocation policy σ ∈ S, we define two arrival times: (i) τM represents the time

at which either the new technology is discovered or the product is developed by the old

technology; (ii) τD represents the time of the product development. Observe that, τM must

be less than or equal to τD by definition. This inequality is strict if and only if the new

technology is discovered prior to the product development. Therefore, we use (τM = τD)

to indicate the event that the new technology is discovered before the product is developed

using the old technology and (τM < τD) to indicate the event that the product is developed

before the new technology discovery.

Observe that pσ can be expressed in terms of τM and τD as follows: pσ(t) := Pr(τM < t <

τD | τD > t). Let Σt :=
∫ t

0
σ(s) ds represent the cumulative research. We begin by observing

that the probability that neither new technology discovery nor product development is made

by time t is given by

SM
σ (t) := Pr(τM > t) = e−λL(t−Σt)−µΣt . (C.1)

Additionally, we can derive the probability that new technology is discovered, but product

is yet to be developed by time t:

Lσ(t) := Pr(τM < t < τD) =

∫ t

0

µσ(s)e−λL(s−Σs)−µΣse−λH(t−s) ds. (C.2)
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The probability SD
σ (t) that neither product development nor new technology discovery

was made by time t can be written as:

SD
σ (t) := Pr(τD > t) = Pr(τM > t) + Pr(τM < t < τD) = SM

σ (t) + Lσ(t). (C.3)

Finally, we obtain an expression for our conditional probability pσ in terms of Lσ and

SM
σ :

pσ(t) = Pr(τM < t | τD > t) =
Pr(τM < t < τD)

SD
σ (t)

=
Lσ(t)

SM
σ (t) + Lσ(t)

. (C.4)

C.2 Proofs of Propositions

C.2.1 Proof of Proposition 5.1

Proof of Proposition 5.1. From (C.4), we can derive that pσ(t)/(1− pσ(t)) = Lσ(t)/S
M
σ (t).

By differentiating this equation side-by-side, we have

ṗσ(t)

(1− pσ(t))
2
=

Lσ(t)

SM
σ (t)

[
L′
σ(t)

Lσ(t)
− SM

σ
′
(t)

SM
σ (t)

]
=

pσ(t)

1− pσ(t)

[
L′
σ(t)

Lσ(t)
− SM

σ
′
(t)

SM
σ (t)

]
. (C.5)

From deriving (C.1) and (C.2), we obtain that

SM
σ

′
(t) =− {λL(1− σ(t)) + µσ(t)} · SM

σ (t), (C.6)

L′
σ(t) =µ · σ(t) · SM

σ (t)− λH · Lσ(t) (C.7)

Using these expressions in (C.5) and multiplying side by side by (1− pσ(t))
2, we obtain the

desired result.
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C.2.2 Proof of Proposition 5.2

Proof of Proposition 5.2. Our goal is to show that the unique solution of ξ(p⋆, σ⋆) = λ⋆ and

δ(p⋆, σ⋆) = 0 is

p⋆ =
µ(λ⋆ − λL)

2λLλ⋆

= 1− (µ− λL)(λH − λ⋆)

2λLλ⋆

, (C.8)

σ⋆ =
λ⋆ − λL

µ− λL

. (C.9)

Then, to have (p⋆, σ⋆) ∈ (0, 1)2, we need to have min{µ, λH} > λ⋆ > λL.

From ξ(p⋆, σ⋆) = λ⋆, δ(p⋆, σ⋆) = 0 and p⋆ < 1, we have

λ⋆ =p⋆λH + (1− p⋆)(1− σ⋆)λL, (C.10)

0 =µσ⋆ − {λH − (1− σ⋆)λL} p⋆. (C.11)

By rearranging (C.11), we have

µσ⋆ =λHp⋆ + (1− σ⋆)λL(1− p⋆)− λL(1− σ⋆) = λ⋆ − λL(1− σ⋆).

By solving this, we can derive (C.9).

Next, from (C.11) and (C.9), we have

p⋆ =
µσ⋆

λH − (1− σ⋆)λL

=
µ(λ⋆ − λL)

(µ− λL)λH − (µ− λ⋆)λL

.

Note that λLλ⋆ = (µ− λL)λH −µλL. By plugging this into the above equation, we have the

first equality of (C.8). Observe that

1− p⋆ =
2λLλ⋆ − µλ⋆ + µλL

2λLλ⋆

=
λL(µ+ λ⋆)− (µ− λL)λ⋆

2λLλ⋆

=
(µ− λL)(λH − λL)

2λLλ⋆

,

which confirms the second equality of (C.8).
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C.3 Proof Sketch of Theorem 2

Recursive Formulation Let V1(t;h) and V0(t;h) be the continuation payoffs of a firm

with and without the new technology at time t, respectively, when the opponent employs an

allocation policy with associated development rate h, and no firm has succeeded in develop-

ment so far. Formally, we define V1 as follows:

V1(t;h) :=

∫ ∞

t

{λHΠ− c} · e−
∫ s
t (h(u)+λH)du ds (C.12)

The exponential term captures the probability that the race is still on by time s, given

that the race is on by time by time t. The term λHΠ− c captures the flow expected payoff

of the firm with the new technology. On top of fixing the opponent’s development rate h,

we can fix the firm’s policy σ ∈ S to compute the continuation value v0 of the firm without

the new technology as follows:

v0(t;σ,h) :=

∫ ∞

t

{
σ(s)µV 1(s;h) + (1− σ(s))λLΠ− c

}
· rh,σ(s; t) ds, (C.13)

rh,σ(s; t) :=e−
∫ s
t {h(u)+σ(u)µ+(1−σ(u))λH}du.

In this expression, as before, the exponential term captures the probability that race is

on and the firm does not have the new technology by time s, given that both hold at time t.

Conditional on this event, the firm enjoys an expected flow payoff captured by the expression

in brackets: the firm pays the cost c and, at rate σ(s)µ, the firm obtains the new technology

which induces a continuation payoff V1(s,h). At rate (1 − σ(s))λL the firm successfully

develops, which induces a lump-sum payoff Π. By maximizing over all the allocation policies

in S, we obtain the continuation value of a firm without the new technology V0.

V0(t;h) := max
σ∈S

v0(t;σ,h).
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Best responses To characterize the optimal policy σ given the opponent’s development

rate h, define R(x, t;h) and R(t;h) as follows:

R(x, t;h) := µx(V1(t;h)− V0(t;h)) + λL(1− x)(Π− V0(t;h)), (C.14)

R(t;h) :=
∂R
∂x

(x, t;h) = µ(V1(t;h)− V0(t;h))− λL(Π− V0(t;h)).

We can interpret R as the instantaneous payoff at time t by allocating x to research

and 1− x to development with the old technology. The new technology is discovered at the

rate µx, yielding the new continuation payoff V1(x;h) but losing the present continuation

payoff V0(x;h). Similarly, the product is developed with the old technology at the rate

λL(1 − x), resulting in the reward Π but losing V0(x;h). At each time t, the firm chooses

a resource allocation to maximize R. Therefore, we interpret R as capturing the relative

incentives to conduct research: when R is positive, conducting research is preferred over

developing with the old technology, conversely, when R is negative, developing with the

old technology is preferred. The following proposition formalizes this verification arguments

given the opponent’s resource allocation policy σ̂. The proof is in Appendix OA.2.4.

Proposition C.1. An allocation policy σ∗ is a best-response to σ̂, i.e. U(σ∗, σ̂) ≥ U(σ, σ̂)

for all σ ∈ S, if and only if the following two conditions hold for every time t ≥ 0: (i)

v0(t;σ
∗,hσ̂) > 0; and (ii) σ∗(t) ∈ argmaxx∈[0,1]R(x, t;hσ̂).

Properties with Monotone Development Rates We now highlight two features of the

MDNE. The first feature arises when an allocation policy satisfies the MDR property. The

proof is in Section OA.2.2.3.

Proposition C.2. Suppose that σ ∈ S satisfies the MDR property. If σ(s) = 0, then

σ(t) = 0 for all t < s.

The intuition for this result is as follows. Suppose that σ(s) = 0 and pσ(s) > 0. Then,

the probability that this firm has discovered the new technology decreases as it does not

conduct research at time s, which in turn decreases the development rate. This violates
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the MDR property. To eliminate this effect, we need to ensure pσ = 0, which can only be

achieved by σ(t) = 0 for all t < s.

The next feature emerges when a firm faces a rival employing an allocation policy with

the MDR property. The proof is in Section OA.2.5.2.

Proposition C.3 (Single-Crossing Property). Suppose that h is increasing with h(t) < λ⋆

for all t. Then, −R(x, t;h) satisfies the single-crossing property: for all x′ > x and t′ > t,

−R(x′, t;h) ≥ (>) −R(x, t;h) ⇒ −R(x′, t′;h) ≥ (>) −R(x, t′;h),

or equivalently, 0 ≥ (>) R(t;h) implies 0 ≥ (>) R(t′;h).

Roughly speaking, from the single-crossing property of −R, we obtain that, under the

best response policy, the resource allocation to research weakly decreases over time.18

Equilbirium Characterization Equipped with the verification result (Proposition C.1)

and the properties derived from the MDR property (Proposition C.2 and C.3), we proceed

to explain the intuition behind the proof of Theorem 2 concerning the different parameters.

Theorem 2 (a) When λ⋆ < λL, (σA,σB) = (0,0) is the unique MDNE.

In Theorem 1, we obtained that when λ⋆ < λL and firms observe their rivals’ research

progress, the unique MPE involves both firms developing with the old technology. Intuitively,

the equilibrium allocations from this MPE survive as an equilibrium in the unobservable case

because the information about the opponent’s technology was not used anyway. To show

that this is the unique MDNE, first note that any optimal policy has to eventually generate

development rates higher than λL. Otherwise, the policy would be dominated by developing

with the old technology. Thus, the development rates must converge to a rate higher than λ⋆.

In Online Appendix OA.2.8, we show that the incentives to do research, R, must therefore

converge to a negative number. By Proposition C.1, there must be a time after which the

firms stop allocating resources to research. However, Proposition C.2 implies that if a firm
18To be precise, the single-crossing property only guarantees monotonicity in the strong set of order

(Milgrom and Shannon, 1994). We present additional arguments to substantiate this claim.
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ever allocates resources to research, stopping would induce a decreasing development rate.

Thus, the only possibility is that firms do not conduct research at all.

Theorem 2 (b) When λ⋆ > min{µ, λH}, (σA,σB) = (1,1) is the unique MDNE.

First, we show that for any policy that satisfies monotone development rate, the de-

velopment rates are bounded above by min{µ, λH}. This is true because maintaining a

development rate higher than min{µ, λH} requires a strictly decreasing σ to compensate for

the decrease in beliefs pσ. At some time, σ(t) must reach zero, and such development rate

cannot be maintained anymore. Thus, the development rates of the firms must converge

to some rate weakly lower than min{µ, λH}, which is lower than λ⋆. Therefore, for any σ

satisfying MDR, there is a time T for which R(t;hσ) > 0 for all t > T . However, we also

show in Proposition C.3 that if a firm finds it optimal to allocate resources to development

with the old technology (R(t,h) < 0) then it must be that this is always optimal (R(t,h) < 0

for all s > t). The only equilibrium candidate is therefore (1, 1).

Theorem 2 (c) When λ⋆ ∈ (λL,min{λH , µ}), the stationary fall-back policy profile is the

unique MDNE.

First, we establish that in any MDNE both firms’ development must converge precisely

to λ⋆ (Lemma OA.2.13). Essentially, we show that any other converging limits lead to a

contradiction. Next, we prove that, in any MDNE, the two firms must reach the development

rate λ⋆ simultaneously. If one firm reaches λ⋆ first, we show using Lemma OA.2.11 that

the firm has incentives to allocate all resources to research until the opponent reaches λ⋆.

However, this allocation would necessarily elevate the development rate, pushing it beyond

λ⋆.

Let’s define T⋆ as the time when both firms reach the development rate λ⋆. From T

onward, the firms develop at the rate λ⋆. We show that there is a unique constant probability

and allocation, p⋆ and σ⋆, that can maintain the development rate at λ⋆, as any deviation

from these levels would induce the development rates to diverge. To obtain the allocations

before time T⋆, we apply Lemma OA.2.11 again to show that firms must strictly allocate all

resources to research before T⋆. The continuity of the probability function pins down the
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time T⋆, since it must therefore be that p1(T⋆) = p⋆.

D Proofs for Patent, License and Trade Secret

D.1 Proof of Proposition 6.1

Proof of Proposition 6.1. When the offer is rejected, Firm j’s expected payoff is λLΠ−c
λH+λL

. Note

that V11 is the expected payoff when both firms race with the new technology. thus, when

the license offer with the fee l is accepted, Firm j’s expected payoff is V11− l. Then, Firm i’s

optimal offer is l∗ = V11− (λLΠ− c)/(λH +λL), and we can derive (6.1) with simple algebra.

Then, once the offer is accepted, Firm i’s expected payoff is V11 + l∗ and Firm j’s expected

payoff is V11 − l∗.

D.2 Patents under Public Information Setting

D.2.1 Equilibrium Characterization

In this section, we fully characterize the equilibrium of the patent game under the public

information setting.

First, we show that firms always apply for patents upon discovering the new technology.

Proposition D.1. Suppose that firms’ research progress is public information. In any sub-

game perfect Nash Equilibrium (SPNE), the first firm to discover the new technology applies

for a patent.

Note that the patent application of the first firm to obtain the new technology cannot be

challenged. With this result and the equilibrium licensing fee from Proposition 6.1, we can

pin down the continuation payoffs of both firms after the new technology is first discovered.

We use these continuation payoffs to analyze the resource allocation of the firms before the

new technology is first discovered. As in Section 4, we focus on Markov strategies, i.e.,

allocations that are independent of calendar time. Let siP denote the research allocation

of Firm i in the absence of the new technology discovery by either firm. The following

proposition characterizes the equilibrium resource allocations.
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Figure 6: Equilibrium Resource Allocations in the Patent Game under Public Information

Proposition D.2. Suppose that firms’ research progress is public information. In any MPE,

the resource allocations before the new technology is first discovered are characterized as

follows:

(a) if λ⋆ > λL, both firms conduct research: sAP = sBP = 1;

(b) if λHλL

2λH+λL
> λ⋆, both firms develop with the old technology: sAP = sBP = 0;

(c) if λL > λ⋆ >
λHλL

2λH+λL
, there exist thresholds π̃0 > π̃1 > 1 such that

(i) when π ≡ λLΠ/c > π̃0, both firms develop with the old technology: sAP = sBP = 0;

(ii) when π̃0 > π > π̃1, there are three equilibrium allocations: one firm does research

and the other firm develops with the old technology, i.e., (sAP , sBP ) = (1, 0) or (0, 1);

both firms allocate some amount z∗ ∈ (0, 1) resources to research: sAP = sBP = z∗;

(iii) when π̃1 > π, both firms do research: sAP = sBP = 1;

Note that Proposition 6.2 corresponds to Proposition D.2 (a) and (c)-(i). Figure 6 sum-

marizes the result. We can see that firms conduct research in a wider parametric region

compared to the case without patents, as described in Figure 2. Intuitively, the option to

patent increases the value of conducting research.
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D.2.2 Proof of Proposition D.1

Proof of Proposition D.1. Suppose that Firm i has just discovered the new technology and

Firm j does not have the patent for the new technology. If Firm j already has the patent,

Firm i cannot apply for a patent in the first place.

First, consider the case where Firm j already has the new technology (not the patent).

If Firm i does not apply for a patent, both firms race toward development with the new

technology. Thus, Firm i’s expected payoff is λHΠ−c
2λH

. If Firm i applies for a patent, with

probability α, Firm j’s right to use the new technology is protected, and with probability

1− α, Firm i acquires the patent. In either case, Firm i’s expected payoff is at least λHΠ−c
2λH

,

thus, Firm i prefers to apply for a patent.

Next, consider the case where Firm j does not have the new technology. Suppose that

in equilibrium, Firm j allocates x ∈ [0, 1] to research and 1− x to development with the old

technology, when it observes the new technology discovery by Firm i (without a patent). To

maximize Firm j’s expected payoff, we have

µx · Ũ j + λL(1− x) · Π− c

λH + µx+ λL(1− x)
≥ λLΠ− c

λH + λL

, (D.1)

where Ũ j is Firm j’s expected payoff when it also discovers the new technology. To constitute

an equilibrium, Firm i’s expected payoff under this Firm j’s strategy should be greater than

or equal to Firm i’s expected payoff from applying for a patent:

λH · Π+ µx · Ũ i − c

λH + µx+ λL(1− x)
≥ ULicensor, (D.2)

where Ũ i is Firm i’s expected payoff when Firm j discovers the new technology.

Note that Ũ i + Ũ j ≤ Π− 2c
2λH

since the social welfare is maximized when both firms use

the new technology, and ULicensor +
λLΠ−c
λH+λL

= Π − c
λH

from Proposition 6.1. By using these

and summing (D.1) and (D.2) up, we have

Π− c

λH

≤ Π−
µx
λH

+ 2

λH + µx+ λL(1− x)
c.
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However, this inequality is equivalent to λH +µx+λL(1−x) ≥ 2λH +µx, which contradicts

λH > λL and x ≤ 1. Therefore, in equilibrium, Firm i applies for a patent.

D.2.3 Proof of Proposition D.2

We begin by extending our MPE characterization in Lemma B.2 to the cases where ∆1 and

∆0 have different signs.

Lemma D.1. The equilibrium allocations at state ∅ are characterized as follows:

(a) when ∆0 > 0 > ∆1, there are three possible equilibrium allocations:

(i) one firm does research and the other firm develops with the old technology, i.e.,

(sA(∅), sB(∅)) = (1, 0) or (0, 1),

(ii) both firms allocate z∗ = ∆0/(∆0−∆1) amount of resources to research and the re-

mainder to the development with the old technology, i.e., (sA(∅), sB(∅)) = (z∗, z∗);

(b) when ∆1 > 0 > ∆0, there are three possible equilibrium allocations:

(i) both firms do research, i.e., (sA(∅), sB(∅)) = (1, 1),

(ii) both firms develop with the old technology, i.e., (sA(∅), sB(∅)) = (0, 0),

(iii) both firms allocate z∗ = −∆0/(∆1 − ∆0) amount of resources to research and

the remainder to the development with the old technology, i.e., (sA(∅), sB(∅)) =

(z∗, z∗).

Proof of Lemma D.1. (a) From ∆0 > 0 and (B.2), we have ∂u0

∂x
|y=0 > 0, i.e., x = 1 is the

best response for y = 0. In addition, from 0 > ∆1 and (B.2), we have ∂u0

∂x
|y=1 < 0,

i.e., x = 0 is the best response for y = 1. Therefore, (1, 0) and (0, 1) can be supported

equilibrium allocations at ω = ∅.

Next, note that z∗ ∈ (0, 1) and ∂u0

∂x
|y=z∗ = 0, i.e., any x ∈ [0, 1] is the best response for

y = z∗. Thus, (z∗, z∗) can be supported as an equilibrium allocation.

Last, consider any ỹ ∈ (0, 1) with ỹ ̸= z∗. Then, ∂u0

∂x
|y=ỹ ̸= 0, i.e., the best response is

x = 1 or x = 0. Recall that the best response of x = 1 (x = 0) is y = 0 (y = 1), thus,

y = ỹ cannot be a part of an equilibrium allocation.
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(b) From ∆0 < 0 and (B.2), we have ∂u0

∂x
|y=0 < 0, i.e., x = 0 is the best response for y = 0.

Thus, (0, 0) can be supported as an equilibrium allocation.

Similarly, from 0 < ∆1 and (B.2), we have ∂u0

∂x
|y=1 > 0, i.e., x = 1 is the best response

for y = 1. Therefore, (1, 1) can also be supported as an equilibrium allocation.

Next, note that z∗ ∈ (0, 1) and ∂u0

∂x
|y=z∗ = 0, i.e., any x ∈ [0, 1] is the best response for

y = z∗. Thus, (z∗, z∗) can be supported as an equilibrium allocation.

Last, by using the similar argument as in the previous case, ỹ ∈ (0, 1) with ỹ ̸= z∗

cannot be a part of an equilibrium allocation.

Proof of Proposition D.2. To apply Lemma D.1, we first compute ∆̂0 and ∆̂1 by replacing

(U i
{i}, U

j
{i}) to (ULicensor, ULicensee) in (B.1):

∆̂0 =
µULicensor − c

µ+ λL

− λLΠ− c

2λL

,

∆̂1 =
µULicensor + µULicensee − c

2µ
− λLΠ+ µULicensee − c

µ+ λL

.

By using Proposition 6.1, we can derive that

∆̂0 =
λHλL(λ⋆ − λL)Π + (λH + λL)λ⋆c

2λH(λH + λL)(λL + µ)
,

∆̂1 =
λHλL(λ⋆ − λL)Π + λL

2µ
{(2λH + µ+ λL)λ⋆ + (µ− λL)λH} c

2λH(λH + λL)(λL + µ)
.

First, observe that λ⋆ ≥ λL implies ∆̂0, ∆̂1 > 0. Then, by Lemma D.1 (a), both firms do

research, thus, Proposition D.2 (a) holds. Next, when λL > λ⋆, we have

∆̂0 > 0 ⇐⇒ π̃0 ≡
λ⋆(λH + λL)

λH(λL − λ⋆)
>

λLΠ

c
= π,

∆̂1 > 0 ⇐⇒ π̃1 ≡
λL

2µ
{(2λH + µ+ λL)λ⋆ + (µ− λL)λH}

λH(λL − λ⋆)
> π.

Suppose that λ⋆ ∈
(

λHλL

2λH+λL
, λL

)
. By using µ > λL, we can show that π̃0 > π̃1 > 1.
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(i) if π > π̃0 > π̃1, we have ∆̂0, ∆̂1 < 0, then, by Proposition 1 (b), both firms develop

with old technology;

(ii) if π̃0 > π > π̃1, we have ∆̂0 > 0 > ∆̂1, then, by Proposition 1 (c), there are three

equilibria including the asymmetric one;

(iii) if π̃1 > π > 1, we have ∆̂0, ∆̂1 > 0, then, by Proposition 1 (a), both firms do research.

Thus, Proposition D.2 (b) holds.

Now suppose that λ⋆ ≤ λHλL

2λH+λL
. With some algebra, we have 1 ≥ π̃1 ≥ π̃0. From π > 1,

we have ∆̂0, ∆̂1 < 0, then, by Proposition 1 (b), both firms develop with old technology.

Thus, Proposition D.2 (c) holds.

D.3 Proofs for Efficient Patent Equilibrium

Proof of Lemma 6.1. Suppose that Firm i has discovered the new technology, and Firm j

has not applied for a patent yet. Given Firm j’s patent application strategy, the fact that

Firm j has not applied for a patent implies that Firm j does not have the new technology

yet. Therefore, if Firm i applies for a patent, it will attain the patent with probability one

and its expected continuation payoff is ULicensor = V11 + l∗. Suppose instead that Firm i

decides not to apply for a patent. Firm i’s payoff in the case in which Firm i finds the new

technology before a successful development is Uα
Challenger = V11− (1−α) · l∗. Therefore, Firm

i’s expected payoff of not applying for a patent is

λHΠ+ µ · Uα
Challenger − c

λH + µ
=

(µ+ 2λH)V11 − µ(1− α)l∗

λH + µ
. (D.3)

Firm i applies for a patent when ULicensor is greater than (D.3), which is equivalent to:

(λH + µ)V11 + (λH + µ)l∗ > (µ+ 2λH)V11 − µ(1− α)l∗

⇐⇒ {λH + µ(2− α)} l∗ > λHV11.

Since 1 > α, λH , µ > 0 and V11 > 0, it is equivalent to (6.2).
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Proof of Proposition 6.3. By plugging (6.1) in, we have that (6.2) is equivalent to:

λH − λL

λH + λL

· λHΠ+ c

λHΠ− c
>

λH

λH + µ(2− α)

⇐⇒ {λH(λH − λL) + µ(λH − λL)(2− α)} (λHΠ+ c) > λH(λH + λL)(λHΠ− c)

⇐⇒ {µ(λH − λL)(2− α)− 2λLλH} · λHΠ+
{
µ(λH − λL)(2− α) + 2λ2

H

}
· c > 0.

Note that µ(λH−λL) = λL(λ⋆+λH) from (3.1). By plugging this in, the above inequality

is equivalent to:

{(2− α)λ⋆ − αλH} · λHλLΠ+
{
(2− α)λL(λ⋆ + λH) + 2λ2

H

}
· c > 0

⇐⇒ (λ⋆ + λH) (α̂− α) · λH

(
λLΠ

c
− 1

)
+ (2− α)(λL + λH)(λ⋆ + λH) > 0.

If α ≤ α̂, the first term in the above inequality is nonnegative and the second term is positive

from α < 1 and λL, λH , λ⋆ > 0. If α > α̂, by rearranging it and using π = λLΠ
c

, we can

show that the above inequality is equivalent to (6.3).

D.4 Proofs for Concealment Equilibrium

Let σ∗ denote the unique equilibrium policy in Theorem 2. From (C.12), V1(t;hσ∗) is the

continuation value of firms in such equilibrium. A concealment equilibirium is an equilibrium

of the game with patents such that the firms never patent the new technology and follow

policy σ∗.

Observation There is a concealment equilibrium if and only if, for all t ≥ 0,

V1(t;hσ∗) ≥ V11 + (1− αpσ∗(t)) · l∗. (D.4)

To understand the observation, notice that (D.4) captures the trade-off in the patenting

decision of a firm that discovers the new technology at time t, when the opponent follows

policy σ∗ and never patents. The left-hand-side denotes the payoff obtained by not patenting,

i.e by keeping the discovery secret. The right-hand-side captures the expected payoff if the
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firm decides to patent at time t. If (D.4) holds for all t, then it is a best response to never

patent.

Under λH > λ⋆ > µ, by Theorem 2 (b), firms employ the research policy in the private

information setting, i.e., σ∗ = 1. The following lemma provides the closed form solution of

V1(t;h1).

Lemma D.2. When λH > λ⋆ > µ, the following equation holds:

V1(t;h1) =

{
1 +

λH

λH + µ
(1− p1(t))

}
· V11. (D.5)

Proof of Lemma D.2. By Lemma OA.2.1, p1(t) is increasing in t. Then, V1(t;h1) can be

written as a function of p1(t): V1(t;h1) = v1(p1(t)). Observe that

V ′
1(t;h1) = v′1(p

′
1(t)) · p′

1(t) = v′1(p
′
1(t)))(µ− λH p1(t))(1− p1(t)).

By plugging this into (HJB1), we have

0 = v′1(p)(µ− λHp)(1− p)− λH(1 + p)v1(p) + λHΠ− c. (D.6)

Define two function g(p) and k(p) as follows:

g(p) :=
(µ− λHp)

µ+λH
λH−µ

(1− p)
2λH

λH−µ

and k(p) := 1 +
λH

λH + µ
(1− p). (D.7)

Observe that

g′(p)

g(p)
=

d log(g(p))

dp
= −µ+ λH

λH − µ
· λH

µ− λHp
+

2λH

λH − µ
· 1

1− p
= − λH(1 + p)

(1− p)(µ− λHp)
(D.8)

and

d

dp
(g(p) · k(p)) = − λH(1 + p)k(p)

(1− p)(µ− λHp)
g(p)− λH

λH + µ
g(p) = − 2λH

(1− p)(µ− λHp)
g(p) (D.9)
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By multiplying (D.6) by g(p)
(µ−λHp)(1−p)

and using above two equations, we have

0 =v′1(p) · g(p) + g′(p) · v1(p) +
λHΠ− c

2λH

· g(p)

(1− p)(µ− λHp)

=
d

dp
[(v1(p)− V11 · k(p)) · g(p)] .

Therefore, there exists C ∈ R such that

v1(p) = V11 · k(p) +
C

g(p)
. (D.10)

In Lemma OA.2.1, we show that if µ ≥ λH , lim
t→∞

p1(t) = 1, and if µ < λH , lim
t→∞

p1(t) =

µ/λH . By using these, we have that lim
t→∞

g(p1(t)) = 0. Then, to satisfy V1(t;h1) = v1(p1(t))

and (D.10), the constant C has to be zero, and (D.5) holds.

By using this lemma, (D.4) is equivalent to:

l∗

V11

<
λH

λH + µ
· 1− p1(t)

1− α · p1(t)
. (D.11)

The right hand side is decreasing in p1(t). Under λH > λ⋆ > µ, p1(t) converges to µ/λH ,

thus, we can plug this into (D.11):

l∗

V11

<
λH(λH − µ)

(λH + µ)(λH − αµ)
. (D.12)

With simple algebra, we can show that λH(λH−µ)
(λH+µ)(λH−αµ)

≤ λH

λH+µ(2−α)
. Therefore, the threshold

for the concealment equilibrium is below the one for the efficient patent equilibrium, i.e.,

there is no parameter such that both the efficient patent equilibrium and the concealment

equilibrium exist. By solving (D.12), we can pin down the parametric conditions under

which the concealment equilibrium exists.

α > α̃ :=
2λH(µ+ λ⋆)

(λH + µ)(λH + λ⋆)
(D.13)

and

π > π̃(α) := 1 +
λH + λL

λH + µ
· 2λH − (λH + µ)α

λH(α− α̃)
. (D.14)
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Now we provide the proof of Proposition 6.4

Proof of Proposition 6.4. By using using µ(λH−λL) = λL(λ⋆+λH), λH(µ−λL) = λL(λ⋆+µ)

and (6.1), we have that (D.12) is equivalent to:

(λH + λL)(2λH − α(λH + µ)) < (λH + µ)(α− α̃)λH · (π − 1) .

Note that 2λH − α(λH + µ) > 0 from λH > µ and 1 ≥ α. Therefore, if α ≤ α̃, the above

inequality cannot hold. When α > α̃, by rearranging the above inequality, we have (D.14).

Observe that α̃ > α̂ is equivalent to:

2λH(µ+ λ⋆) > 2λ⋆(λH + µ)

and it holds from the assumption that λH > λ⋆.

Next, observe that π̃(α) ≥ π̂(α) is equivalent to:

2λH

λH+µ
− α

α− α̃
≥ 2− α

α− α̂
⇐⇒

2λH

λH+µ
− α̃

α− α̃
≥ 2− α̂

α− α̂
. (D.15)

Also note that

2λH

λH + µ
− α̃ =

2λH

λH + µ
· λH − µ

λH + λ⋆

and 2− α̂ =
2λH

λH + λ⋆

.

By plugging these in, (D.15) is equivalent to:

α̃− λH − µ

λH + µ
α̂ ≥ 2µ

λH + µ
α. (D.16)

Note that

α̃− λH − µ

λH + µ
α̂ =

2λH(µ+ λ⋆)

(λH + µ)(λH + λ⋆)
− λH − µ

λH + µ
· 2λ⋆

λH + λ⋆

=
2µ

λH + µ
.

Therefore, (D.16) is equivalent to 1 ≥ α. Therefore, π̃(α) ≥ π̂(α) holds for all 1 ≥ α > α̃

and the equality holds if and only if α = 1.

51



Online Appendix for “Strategic

Concealment in Innovation Races”

OA.1 Optimal Control Theory

OA.1.1 Useful Observations

Let τ be a random variable on R+. Suppose that it has a continuous and differentiable

cumulative distribution function F : R+ → [0, 1]. Let S(t) denote the survival function of τ ,

i.e., S(t) = 1− F (t). If limt→∞ t · S(t) = 0, the following equation holds:

E[τ ] =
∫ ∞

0

t · F ′(t)dt = −t · S(t)
∣∣∣∣∞
0

+

∫ ∞

0

S(t)dt =

∫ ∞

0

S(t)dt. (OA.1.1)

Let h be a development rate function of τ : h(t) = −S ′(t)/S(t).19 Then, under the assumption

that F (0) = 0, we can derive that S(t) = e−
∫ t
0 h(s)ds. Then, (OA.1.1) can be rewritten as

follows:

E[τ ] =
∫ ∞

0

e−
∫ t
0 h(s)dsdt. (OA.1.2)

Consider another random variable τ̂ independent to τ . Let Ŝ and ĥ be its survival and

development rate functions. Observe that

Pr[τ < τ̂ ] =

∫ ∞

0

Ŝ(t) dF (t) = −
∫ ∞

0

S ′(t) · Ŝ(t) dt. (OA.1.3)

Then, (OA.1.3) can be rewritten as follows:

Pr[τ < τ̂ ] =

∫ ∞

0

h(t) · S(t) · Ŝ(t) dt =
∫ ∞

0

h(t) · e−
∫ t
0 (h(s)+ĥ(s))ds dt. (OA.1.4)

Now consider another random variable which is a minimum of τ and τ̂ , denoted by (τ∧τ̂).
19In the literature, the function h(t) is often referred to as a ‘hazard rate’ function. The term hazard rate

originated from the tradition of describing arrivals as negative events such as failures. In our context, where
we are analyzing the timing of product developments, we use the term ‘development rate’ instead of hazard
rate.
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Then, the survival function of (τ ∧ τ̂) is S(t) · Ŝ(t), and the development function of (τ ∧ τ̂)

is h(t) + ĥ(t). By applying (OA.1.2), when limt→∞ t · S(t) · Ŝ(t) = 0, we have

E[τ ∧ τ̂ ] =

∫ ∞

0

e−
∫ t
0 (h(s)+ĥ(s))ds dt. (OA.1.5)

OA.1.2 Formal Definitions of Arrival Times

Given an allocation policy σ : R+ → [0, 1], we define the following random variables:

1. τL: the arrival time of successful development with the old technology;

2. τR: the arrival time of the new technology discovery.

Recall that Σt ≡
∫ t

0
σsds. Then, the survival functions of τL and τR are given as follows: for

all t ≥ 0,

SL
σ (t) = e−λL(t−Σt) and SR

σ (t) = e−µΣt . (OA.1.6)

In addition, the development rate functions can be derived as follows:

hL
σ (t) = λL(1− σt) and hR

σ (t) = µσt. (OA.1.7)

Intuitively, the product is developed with the old technology at the rate hL
σ (t) = λL(1− σt)

and the new technology is discovered at the rate hR
σ (t) = µσt.

OA.1.3 Benchmark: Constant Development Rate

Lemma OA.1.1. Suppose that Firm j has a constant development rate λ. When Firm i

employs an allocation policy σ, its expected payoff is given as follows:

V 0
λ (σ) =

∫ ∞

0

(
λL(1− σt) · Π+ µ σt · V1

λ − c
)
· e−λL(t−Σt)−µΣt−λt dt, (OA.1.8)

where Σt ≡
∫ t

0
σsds.

Proof of Lemma OA.1.1. Let τλ be the arrival time of Firm j. When any of the arrival times

τL, τR and τλ occurs, we can regard that Firm i’s payoff is realized. Furthermore, it incurs
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a flow cost c until one of these arrival times takes place. Thus, Firm i’s expected payoff can

be written as follows:

V 0
λ (σ) =Pr[τL < (τR ∧ τλ)] · Π+ Pr[τR < (τL ∧ τλ)] · V1

λ − E[(τL ∧ τR ∧ τλ)] · c. (OA.1.9)

Note that the survival function of (τR∧τλ) is e−
∫ t
0 (µσs+λ)ds = e−µΣt−λt. By using (OA.1.4)

and (OA.1.7), we have

Pr[τL < (τR ∧ τλ)] =

∫ ∞

0

λL(1− σt) · e−λL(t−Σt)−µΣt−λt dt.

Likewise, we can derive that

Pr[τR < (τL ∧ τλ)] =

∫ ∞

0

µ σt · e−λL(t−Σt)−µΣt−λt dt.

Next, observe that the survival function of (τL ∧ τR ∧ τλ) is

e−λL(t−Σt)−µΣt−λt = e−(λL+λ)t−(µ−λL)Σt .

Then, from µ ≥ λL and Σt + Σ̂t ≥ 0, we have limt→∞ t · e−λL(t−Σt)−µΣt−λt = 0. By applying

(OA.1.1), we have

E[(τL ∧ τR ∧ τλ)] =

∫ ∞

0

e−λL(t−Σt)−µΣt−λt dt.

By plugging the above equations into (OA.1.9), we obtain (OA.1.8).

Lemma OA.1.2. Suppose that x0 ∈ argmaxx∈[0,1] u(x) where u is a function defined in

(A.2). Let σ∗ : R+ → [0, 1] be σ∗
t = x0 for all t ≥ 0. Then, σ∗ ∈ argmaxσ V

0
λ (σ).

Proof of Lemma OA.1.2. Let rt denote e−λL(t−Σt)−µΣt−λt. By taking a derivative, we have

ṙt = −{λL(1− σt) + µσt + λ} · rt. (OA.1.10)

By Lemma OA.1.1, Firm i’s problem is

max
σ

∫ ∞

0

{
λL(1− σt) · Π+ µσt · V1

λ − c
}
· rt dt (OA.1.11)
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subject to (OA.1.10).

Observe that the Hamiltonian of this optimal control problem is

H(σt, rt, ηt) =
{
λL(1− σt) · Π+ µσt · V1

λ − c
}
· rt − ηt {λL(1− σt) + µσt + λ} · rt

= {u(σt)− ηt} · {λL(1− σt) + µσt + λ} · rt, (OA.1.12)

where ηt is a co-state variable.

To show that σ∗ is a solution of (OA.1.11) subject to (OA.1.10) by using the Arrow

sufficiency condition (Seierstad and Sydsaeter, 1987, Theorem 3.14), we consider (η∗, r∗)

defined as follows: for all t ≥ 0, η∗t = u(x0) and r∗t = e−{µx0+λL(1−x0)+λ}·t.

Then, we need to check following four primitive conditions:

1. Maximum principle: for all t ≥ 0,

σ∗
t = x0 ∈ argmax

σt∈[0,1]
H(σt, r

∗
t , η

∗
t ). (OA.1.13)

2. Evolution of the co-state variable:

η̇∗t = −∂H

∂rt
= −{u(σ∗

t )− η∗t } · {λL(1− σ∗
t ) + µσ∗

t + λ}. (OA.1.14)

3. Transversality condition: If r∗ is the optimal trajectory, i.e., r∗t = e−{µx0+λL(1−x0)+λ}·t,

limt→∞ η∗t (r
∗
t − rt) ≤ 0 for all feasible trajectories rt.

4. Ĥ(rt, ηt) = maxσt∈[0,1]H(σt, rt, ηt) is concave in rt.

First, by plugging r∗t and η∗t into (OA.1.12), we have

H(σt, r
∗
t , η

∗
t ) = {u(σt)− u(x0)} · {λL(1− σ∗

t ) + µσ∗
t + λ} · rt (OA.1.15)

Recall that x0 ∈ argmaxx∈[0,1] u(x). Thus, H(σt, r
∗
t , η

∗
t ) ≤ 0 for all σt ∈ [0, 1]. In addition,

H(x0, r
∗
t , η

∗
t ) = 0. Therefore, x0 ∈ argmaxσt∈[0,1]H(σt, rt, ηt), i.e., (OA.1.13) holds.

Second, by the definition of η∗, (OA.1.14) holds.
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Third, note that for any admissible allocation σ,

rt = e−{µΣt+λL(t−Σt)+λt} = r∗t · e(µ−λL)·(x0t−Σt).

Then, we have

lim
t→∞

η∗t · (r∗t − rt) = lim
t→∞

u(x0) · r∗t ·
(
1− e(µ−λL)·(x0t−Σt)

)
= 0.

Last, we can see that Ĥ is linear in rt, thus, the fourth condition holds. Hence, by the

Arrow sufficiency condition, σ∗ is the best response to σ̂∗.

OA.1.4 Public Information Setting

Lemma OA.1.3. Suppose that Firm i and j employ allocation policies σ and σ̂ at the state

∅. Let U i
{i} and U i

{j} be Firm i’s continuation payoffs at the states {i} and {j}. Then, Firm

i’s expected payoffs are given as follows:

U0(σ, σ̂) =

∫ ∞

0

(
λL(1− σt) · Π+ µ σt · U i

{i} + µ σ̂t · U i
{j} − c

)
· e−λL(2t−Σt−Σ̂t)−µ(Σt+Σ̂t) dt,

(OA.1.16)

where Σt =
∫ t

0
σsds and Σ̂t =

∫ t

0
σ̂sds.

Proof. When any of the arrival times τL, τR, τ̂L and τ̂R occurs, the Firm i’s payoff is realized.

Furthermore, it incurs a flow cost c until one of these arrival times takes place. Thus, Firm

i’s expected payoff can be written as follows:

U0(σ, σ̂) =Pr[τL < (τR ∧ τ̂L ∧ τ̂R)] · Π+ Pr[τR < (τL ∧ τ̂L ∧ τ̂R)] · U i
{i}

+ Pr[τ̂R < (τL ∧ τR ∧ τ̂L)] · U i
{j} − E[(τL ∧ τR ∧ τ̂L ∧ τ̂R)] · c.

(OA.1.17)

Note that the survival function of (τR∧ τ̂L∧ τ̂R) is e−λL(t−Σ̂t)−µ(Σt+Σ̂t). By using (OA.1.4)

and (OA.1.7), we have

Pr[τL < (τR ∧ τ̂L ∧ τ̂R)] =

∫ ∞

0

λL(1− σt) · e−λL(2t−Σt−Σ̂t)−µ(Σt+Σ̂t) dt.
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Likewise, we can derive that

Pr[τR < (τL ∧ τ̂L ∧ τ̂R)] =

∫ ∞

0

µ σt · e−λL(2t−Σt−Σ̂t)−µ(Σt+Σ̂t) dt,

Pr[τ̂R < (τ̂L ∧ τL ∧ τR)] =

∫ ∞

0

µ σ̂t · e−λL(2t−Σt−Σ̂t)−µ(Σt+Σ̂t) dt.

Next, observe that the survival function of (τL ∧ τR ∧ τ̂L ∧ τ̂R) is

e−λL(2t−Σt−Σ̂t)−µ(Σt+Σ̂t) = e−2λLt−(µ−λL)(Σt+Σ̂t).

Then, from µ ≥ λL and Σt + Σ̂t ≥ 0, we have limt→∞ t · e−λL(2t−Σt−Σ̂t)−µ(Σt+Σ̂t) = 0. By

applying (OA.1.1), we have

E[(τL ∧ τR ∧ τ̂L ∧ τ̂R)] =

∫ ∞

0

e−λL(2t−Σt−Σ̂t)−µ(Σt+Σ̂t) dt.

By plugging the above equations into (OA.1.17), we obtain (OA.1.16).

Lemma OA.1.4. Suppose that (x0, y0) ∈ [0, 1]2 satisfies x0 ∈ argmaxx∈[0,1] u0(x, y0). Let

σ∗, σ̂∗ : R+ → [0, 1] be σ∗
t = x0 and σ̂∗

t = y0 for all t ≥ 0. Then, σ∗ is a best response to σ̂∗.

Proof of Lemma OA.1.4. This can be proven by following the same steps of the proof of

Lemma OA.1.2 by setting rt denote SM
σ,σ̂∗(t) and using Lemma OA.1.3.

OA.2 Private Information Setting

OA.2.1 Roadmap

The formal proof of Theorem 2 is organized as follows. In Section OA.2.2, we characterize

the closed form solution of the belief under the research policy and provide the proof of

Proposition C.2. Next, we derive the HJB equations (Section OA.2.3), then provide the proof

of Proposition C.1 (Section OA.2.4). Then, we prove Proposition C.3—the single-crossing

property of the instantaenous payoff function R—in Section OA.2.5, and we characterize the

MDNE for each parametric regions in Section OA.2.6.

6



OA.2.2 Preliminary Results

OA.2.2.1 Closed form solution of p1(t)

Lemma OA.2.1. Suppose that a firm follows an allocation policy σ, with σ(s) = 1 for

s ∈ [0, t). Then, the conditional probability pσ(t) of having access to the new technology by

time t given that the race is ongoing is the same as that under the research policy (p1(t)),

which is given as follows:

pσ(t) = p1(t) ≡
1
λH

(
e−µt − e−λH t

)
1
µ
e−µt − 1

λH
e−λH t

.20 (OA.2.1)

In addition, p1(t) is increasing in t, with limt→∞ p1(t) = min{1, µ/λH}.

Proof of Lemma OA.2.1. Note that the conditional probability of having access to the new

technology by time t only depends on the resource allocations prior to time t. Thus, since σ

and 1 have the same resource allocation by time t, pσ(t) and p1(t) are equal. By plugging

σ(t) = 1 to the result of Proposition 5.1, we have p′
σ(t) = (µ − λH pσ(t))(1 − pσ(t)). By

rearranging the differential equation, we can derive that

λH − µ =
d

dt
log

(
λH − λH pσ(t)

µ− λH pσ(t)

)

Then, from pσ(0) = 0, we can derive that

λH(1− pσ(t))

µ− λH pσ(t)
=

λH

µ
e(λH−µ)t

By rearranging the above equation, we have (OA.2.1).

Observe that

p′
1(t) =

µ(λH − µ)2e(λH+µ)t

(λHeλH t − µeµt)2
> 0

Thus, p1(t) is increasing in t.

When µ > λH ,

lim
t→∞

p1(t) = lim
t→∞

1
λH

(
e(λH−µ)t − 1

)
1
µ
e(λH−µ)t − 1

λH

= 1.

20If µ = λH , p1(t) = µt/(1 + µt). All the results follow through with this case.
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When µ < λH ,

lim
t→∞

p1(t) = lim
t→∞

1
λH

(
1− e(µ−λH)t

)
1
µ
− 1

λH
e(µ−λH)t

=
µ

λH

.

OA.2.2.2 Development rates

For any continuous random variable, the hazard rate can be expressed as the negative of the

log of the survival function. The development rate of a firm that follows policy σ ∈ S is the

hazard rate associated with the random variable τD. Therefore, it can be derived as follows:

hσ(t) = −
∂ log

[
SD
σ (t)

]
∂t

= −SD
σ

′
(t)

SD
σ (t)

=
λL(1− σ(t)) · SM

σ (t) + λH · Lσ(t)

SM
σ (t) + Lσ(t)

=λL(1− σ(t)) · (1− pσ(t)) + λH · pσ(t).

(OA.2.2)

Also note that from SD
σ (0) = 1, SD

σ (t) can be rewritten as follows:

SD
σ (t) = e−

∫ t
0 hσ(s)ds. (OA.2.3)

OA.2.2.3 Proof of Proposition C.2

Proof of Proposition C.2. Since σ(s) = 0 and σ is right-continuous, it must be that hσ(s̃) =

λL · (1− pσ(s̃)) + λH · pσ(s̃) for s̃ slightly above s. This means that

0 ≤ h′
σ(s) = (λH − λL) · ṗσ(s) = −(λH − λL)

2 · pσ(s)(1− pσ(s))

where the inequality holds since hσ is weakly increasing. Since pσ(s) < 1, it must be the

case that pσ(s) = 0. This holds only if σ(t) = 0 for all t < s.

OA.2.3 Recursive Formulation

The opponent’s allocation policy is only payoff-relevant for a firm through the distribution

of development times. Thus, in this section, we focus on characterizing the continuation

payoffs of firms fixing the development rate function h of the opponent.
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Lemma OA.2.2. Let V1(t;h) be the continuation payoff of a firm at time t when the firm has

the new technology, neither firm had succeeded in development by time t, and the opponent

employs an allocation policy with development rate h. Then, V1(t;h) takes a form of (C.12).

In addition, the following differential equation holds:

0 = V ′
1(t;h) + (λHΠ− c)− (λH + h(t)) · V1(t;h). (HJB1)

Proof of Lemma OA.2.2. Let τ̂D be the arrival time of the product development by the

opponent whose development rate is h. Note that the continuation payoffs can be written

as follows.

V1(t;h) =Pr[τD < τ̂D | τM = t < (τD ∧ τ̂D)] · Π

− c · E[τD ∧ τ̂D − t | τM = t < (τD ∧ τ̂D)].
(OA.2.4)

Note that (conditional) survival functions of τ̂D and τD can be written as follows:

Pr[τ̂D > s | τM = t < (τD ∧ τ̂D)] =e−
∫ s
t h(u)du,

Pr[τD = τH > s | τR = t < (τL ∧ τ̂D)] =e−λH(s−t).

By applying (OA.1.4) and (OA.1.5), we have

Pr[τD < τ̂D | τR = t < (τL ∧ τ̂D)] =

∫ ∞

t

λHe
−

∫ s
t (λH+h(u))duds,

E[τD ∧ τ̂D − t | τR = t < (τL ∧ τ̂D)] =

∫ ∞

t

e−
∫ s
t (λH+h(u))duds.

By plugging these equations into (OA.2.4), we can derive that (C.12) holds.

By taking a derivative of (OA.2.4), we have

V ′
1(t;h) =− (λHΠ− c) · e−

∫ t
t (λH+h(u))du + (λH + h(t)) · (λHΠ− c) ·

∫ ∞

t

e−
∫ s
t (λH+h(u))duds

=− (λHΠ− c) + (λH + h(t)) · V1(t; σ̂),

which is equivalent to (HJB1).
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Lemma OA.2.3. Let v0 be the continuation payoff at time t of a firm that does not have the

new technology and employs allocation policy σ ∈ S when the opponent has a development

rate h ∈ H. Then, v0 takes a form of (C.13). In addition, the following differential equation

holds:

0 = v′0(t;σ,h) + λL(1− σ(t)) · Π+ µσ(t) · V1(t;h)− c

− {λL(1− σ(t)) + µσ(t) + h(t)} · v0(t;σ, σ̂).
(HJB0)

Proof of Lemma OA.2.3. We focus on the event such that (τM ∧ τ̂D) > t. The continuation

payoff can be written as follows:

v0(t;σ,h) =Pr[τD < τ̂D | (τM ∧ τ̂D) > t] · Π− c · E[τD ∧ τ̂D − t | (τM ∧ τ̂D) > t]. (OA.2.5)

Note that

Pr[τM > s | τM > t] =
SM
σ (s)

SM
σ (t)

,

Pr[τD > s > τM > t | τM > t] =

∫ s

t

e−λH(s−u) · µσ(u) · S
M
σ (u)

SM
σ (t)

du =
Lσ(s|t)
SM
σ (t)

,

where Lσ(s|t) ≡
∫ s

t
e−λH(s−u) ·µσ(u)·SM

σ (u)du. Then, the survival function of τD conditional

on τM > t can be written as follows:

SD
σ |t(s) ≡ Pr [τD > s | τM > t] =

SM
σ (s) + Lσ(s|t)

SM
σ (t)

Also note that Pr[τ̂D > s | τ̂D > t] = e−
∫ s
t h(u)du.

Observe that

L′
σ(s|t) = µσ(s) · SM

σ (s)− λH · Lσ(s|t). (OA.2.6)

Since τD and τ̂D are independent, we can apply (OA.1.3) and (OA.1.5) by resetting the initial

10



time to t. Then, by using (C.6) and (OA.2.6), we have

Pr[τD < τ̂D | (τM ∧ τ̂D) > t] =−
∫ ∞

t

SD
σ |t

′
(s) · e−

∫ s
t h(u)duds

=

∫ ∞

t

λL(1− σ(s)) · SM
σ (s) + λH · Lσ(s|t)

SM
σ (t)

· e−
∫ s
t h(u)duds,

E[τD ∧ τ̂D − t | (τM ∧ τ̂D) > t] =

∫ ∞

t

SM
σ (s) + Lσ(s|t)

SM
σ (t)

· e−
∫ s
t h(u)duds.

By plugging these into (OA.2.5) and using (OA.2.2), we can derive that

v0(t;σ,h) =

∫ ∞

t

[
{λL(1− σ(s))Π− c} · SM

σ (s) + (λHΠ− c) · Lσ(s|t)
]
· e

−
∫ s
t h(u)du

SM
σ (t)

ds.

Thus, it remains to show that

∫ ∞

t

µσ(s)·V1(s;h)·SM
σ (s)·e−

∫ s
t h(u)du ds = (λHΠ−c)·

∫ ∞

0

Lσ(s|t)·e−
∫ s
t h(u)du ds. (OA.2.7)

By plugging (C.12) into the left hand side of (OA.2.7), we have

∫ ∞

t

µσ(s) · (λHΠ− c) ·
[∫ ∞

s

e−
∫ u
s (λH+h(v))dvdu

]
· SM

σ (s) · e−
∫ s
t h(v)dv ds

=(λHΠ− c) ·
∫ ∞

t

Lσ(u|t) · e−
∫ u
t h(v)dv du.

Thus, (C.13) holds.

Last, to show that (HJB0) holds, we multiply SM
σ (t) · e−

∫ t
0 h(u)du to (C.13) and take a

derivative:

− [λL(1− σ(t)) · Π+ µσ(t) · V1(t;h)− c] · SM
σ (t) · e−

∫ t
0 h(u)du

=

[
v′0(t;σ,h)−

(
−SM

σ
′
(t)

SM
σ (t)

+ h(t)

)
· v0(t;σ,h)

]
· SM

σ (t) · e−
∫ t
0 h(u)du.

By using (C.6) and SM
σ (t) · e−

∫ t
0 h(u)du > 0, we can see that (HJB0) holds.

Corollary 2. Let h, ĥ ∈ H be two development functions such that h(s) = ĥ(s) for all s > t.

Then V0(t;h) = V0(t; ĥ) and V1(t;h) = V1(t; ĥ).
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OA.2.4 Verification

In this subsection, we prove the verification result (Proposition C.1). To prove the verification

result, it is useful to first introduce two convergence results.

Lemma OA.2.4. For any σ ∈ S, the following holds:

lim
t→∞

V1(t;hσ) · SD
σ (t) = 0.

Proof. Recall that Σt :=
∫ t

0
σ(s) ds. From λH > λL and µ > λL, we have

e−µt ≤ SM
σ (t) = e−λL(t−Σt)−µΣt ≤ e−λLt, (OA.2.8)

0 ≤ Lσ(t) =

∫ t

0

µσ(s) · SM
σ (s) · e−λH(t−s) ds

<e−(λL+λH)t ·
∫ t

0

µ · eλHs ds <
µ

λH

e−λLt.

(OA.2.9)

Note that the left inequality of (OA.2.8) binds when Σt = t, and the left inequality of

(OA.2.9) binds when Σt = 0. By (C.3), we have

e−µt < SD
σ (t) = SM

σ (t) + Lσ(t) < e−λLt ·
(
µ+ λH

λH

)
. (OA.2.10)

From (OA.2.3) and (C.12), we have

SD
σ (t) · V1(t;hσ) = (λHΠ− c) ·

∫ ∞

t

e−λH(s−t) · SD
σ (s) ds.

By applying (OA.2.10) and since λHΠ > λLΠ > c, we have

(λHΠ− c) ·
∫ ∞

t

e−λH(s−t) · SD
σ (s) ds > (λHΠ− c) ·

∫ ∞

t

e−λH(s−t) · e−µs ds

=
λH

µ+ λH

(
Π− c

λH

)
· e−µt
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and

(λHΠ− c) ·
∫ ∞

t

e−λH(s−t) · SD
σ (s) ds < (λHΠ− c) ·

∫ ∞

t

e−λH(s−t) · µ+ λH

λH

e−λLs ds

=
µ+ λH

λL + λH

(
Π− c

λH

)
· e−λLt.

Therefore, we have that

λH

µ+ λH

(
Π− c

λH

)
· e−µt < SD

σ (t) · V1(t;hσ) <
µ+ λH

λL + λH

(
Π− c

λH

)
· e−λLt. (OA.2.11)

Since the lower bound and the upper bound converge to 0 as t goes to infinity, we obtain

the desired result.

Lemma OA.2.5. For any σ, σ̂ ∈ S,

lim
t→∞

v0(t;σ,hσ̂) · SM
σ (t) · SD

σ̂ (t) = 0. (OA.2.12)

Proof. Note that for any time s ∈ R+, −c < λL(1− σ(s))Π− c < λLΠ. Since λLΠ > c, we

have |λL(1− σ(s))Π− c| < λLΠ.

From (C.13), we have

∣∣v0(t;σ,hσ̂) · SM
σ (t) · SD

σ̂ (t)
∣∣ < λLΠ ·

∫ ∞

t

SM
σ (s) · SD

σ̂ (s) ds

+ µ ·
∫ ∞

t

V1(s;hσ̂) · SM
σ (s) · SD

σ̂ (s) ds.

Observe that from (OA.2.8) and (OA.2.10) in Lemma OA.2.4, we have

∫ ∞

t

SM
σ (s) · SD

σ̂ (s) ds <
µ+ λH

λH

·
∫ ∞

t

e−2λLsds =
µ+ λH

2λLλH

· e−2λLt.

In addition, from (OA.2.11) and (OA.2.10) in Lemma OA.2.4, we have

∫ ∞

t

V1(s;hσ̂) · SM
σ (s) · SD

σ̂ (s) ds <
(µ+ λH)

2

λH(λL + λH)
·
(
Π− c

λH

)
·
∫ ∞

t

e−2λLsds

=
(µ+ λH)

2

2λLλH(λL + λH)
·
(
Π− c

λH

)
· e−2λLt.
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Then, we have

∣∣v0(t;σ,hσ̂) · SM
σ (t) · SD

σ̂ (t)
∣∣ < µ+ λH

2λLλH

[
λLΠ+

µ(µ+ λH)

λL + λH

(
Π− c

λH

)]
· e−2λLt.

Since the right-hand side of the above inequality converges to 0 as t → ∞, (OA.2.12)

holds.

OA.2.4.1 Proof of Proposition C.1

In this proof, we fix the policy of the opponent at σ̂. To save on notation, we will drop the

dependency of the value and survival functions on σ̂ and the opponent’s development rate

hσ̂. Specifically, we will abuse notation and use V1(t) ≡ V1(t;hσ̂), v0(t;σ) ≡ v0(t;σ,hσ̂),

Ŝ(t) ≡ SD
σ̂ (t).

Proof of Proposition C.1 ( ⇐= ). From σ∗, we have that for all σ ∈ S and t ∈ R+

(σ∗(t)− σ(t)) · [µ · (V1(t)− v0(t;σ
∗))− λL · (Π− v0(t;σ

∗))] ≥ 0 (OA.2.13)

Suppose that v0(t;σ
∗) > 0. From (HJB0), we have

0 =v′0(t;σ
∗)− c− hσ̂(t) · v0(t;σ∗) + λL · (Π− v0(t;σ

∗))

+ σ∗(t) · [µ · (V1(t)− v0(t;σ
∗))− λL · (Π− v0(t;σ

∗))] .

Then, (OA.2.13) implies that, for any σ ∈ S and t ≥ 0,

{
hD
σ̂ (t) + hM

σ (t)
}
· v0(t;σ∗)− v′0(t;σ

∗) ≥ λL(1− σ(t)) · Π+ µσ(t) · V1(t)− c.

Multiplying side-by-side by SM
σ (t) · SD

σ̂ (t), we have

− d

dt

[
v0(t;σ

∗) · SM
σ (t) · SD

σ̂ (t)
]
≥ [λL(1− σ(t)) · Π+ µσ(t) · V1(t)− c] · SM

σ (t) · SD
σ̂ (t)
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for all t ≥ 0. Integrating this inequality from 0 to ∞ and using Lemma OA.2.3, we have

v0(0;σ
∗) · SM

σ (0) · SD
σ̂ (0)− lim

t→∞
v0(t;σ

∗) · SM
σ (t) · SD

σ̂ (t)

≥
∫ ∞

0

[λL(1− σ(t)) · Π+ µσ(t) · V1(t)− c] · SM
σ (t) · SD

σ̂ (t)dt = U(σ, σ̂).

Since v0(t;σ
∗), SM

σ (t) and SD
σ̂ (t) are strictly positive, we have

lim
t→∞

v0(t;σ
∗) · SM

σ (t) · SD
σ̂ (t) ≥ 0.

By using this, U(σ∗, σ̂) = v0(0;σ
∗), and SM

σ (0) = SD
σ̂ (0) = 1, we obtain U(σ∗, σ̂) ≥

U(σ, σ̂).

Proof of Proposition C.1 ( =⇒ ). Suppose that σ∗ ∈ argmaxσ∈S U(σ, σ̂). From Lemma

OA.2.3, observe that for any t ≥ 0, a firm’s expected payoff can be rewritten as follows:

U(σ, σ̂) =
∫ t

0

[λL(1− σ(s)) · Π+ µσ(s) · V1(s)− c] · SM
σ (s) · SD

σ̂ (s) ds

+ SM
σ (t) · SD

σ̂ (t) · v0(t;σ).

Now consider the following allocation policy σ̃(s) := σ∗(s)1s<t. Then, SM
σ∗(s) · SD

σ̂ (s) =

SM
σ̃ (s) ·SD

σ̂ (s) for all s ≤ t.21 In addition, by using σ∗(s) = σ̃(s) for all s < t and U(σ∗, σ̂) ≥

U(σ̃, σ̂), we have v0(t;σ
∗) ≥ v0(t; σ̃).

Note that

v0(t; σ̃) =

∫ ∞

t

(λLΠ− c) · S
M
σ̃ (s)

SM
σ̃ (t)

· S
D
σ̂ (s)

SD
σ̂ (t)

ds > 0

from λLΠ > c, SM
σ̃ (s) > 0, and SD

σ̂ (s) > 0. Therefore, v0(t;σ∗) > 0 for all t ≥ 0.

Now assume that there exists σ ∈ S such that (OA.2.13) does not hold for some t ≥ 0.

Observe that V1(·;h) and v0(·;σ,h) are continuous. Since σ∗ and σ are right-continuous,

there exists ϵ > 0 such that for all s ∈ [t, t+ ϵ),

(σ∗(s)− σ(s)) · [µ · (V1(s)− v0(s;σ
∗)− λL · (Π− v0(s;σ

∗))] < 0. (OA.2.14)
21Note that the equality also holds at s = t, since σ∗ and σ̃ differ only at {t}, which is negligible after

integration.
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Consider the following allocation policy σ∗∗ defined by:

σ∗∗(s) :=

σ∗(s), if s /∈ [t, t+ ϵ),

σ(s), if s ∈ [t, t+ ϵ).

By using a similar reformulation as in the previous case, we have

− d

ds

[
v0(s;σ

∗) · SM
σ∗∗(s) · SD

σ̂ (s)
]

≤ [λL(1− σ∗∗(s)) · Π+ µσ∗∗(s) · V1(s)− c] · SM
σ∗∗(s) · SD

σ̂ (s)

(OA.2.15)

for all s ≥ 0, and the inequality strictly holds for s ∈ [t, t + ϵ). Also note that by Lemma

OA.2.5,

lim
s→∞

v0(s;σ
∗) · SM

σ∗∗(s) · SD
σ̂ (s) = lim

s→∞
v0(s;σ

∗) · SM
σ∗(s) · SD

σ̂ (s) = 0.

By integrating (OA.2.15) from 0 to ∞, we have

U(σ∗, σ̂) = v0(0;σ
∗)

<

∫ ∞

0

[λL(1− σ∗∗(s)) · Π+ µσ∗∗(s) · V1(s)− c] · SM
σ∗∗(s) · SD

σ̂ (s) ds

= U(σ∗∗, σ̂),

which contradicts σ∗ ∈ argmaxσ∈S U(σ, σ̂). Therefore, (OA.2.13) holds for all t ≥ 0.

OA.2.5 The Single-Crossing Property

OA.2.5.1 Monotonicity of V1 and V0

We start by considering an opponent with a constant development rate. The following lemma

characterizes the best response in this case, in line with the best responses described for the

case of public information in equations (B.3) and (B.4).

Lemma OA.2.6. For any constant development rate λ ∈ R+, V1(t;λ), V0(t;λ), and R(t;λ)

are constant over time. Moreover, sgn(R(t;λ)) = sgn(λ⋆ − λ).

Proof. Since the allocation problem of a firm when the opponent develops at a constant rate
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λ is memoryless, there must be a constant research rate σ∗ ∈ [0, 1] that is optimal. Then,

V1(t;λ) =
λHΠ− c

λH + λ
and V0(t;λ) =

(1− σ∗)λLΠ+ σ∗µV1(t;λ)− c

(1− σ∗)λL + σ∗µ+ λ
.

Observe that these two value functions are constant in t. Thus, using these expressions, we

obtain:

R(t;λ) = µ(V1(0;λ)− V0(0;λ)− λL(Π− V0(0;λ)) =
(λΠ+ c)λL(λ⋆ − λ)

(λ+ λH)(λ+ (1− σ∗)λL + σ∗µ)
,

which is also constant in t and shares the sign of (λ⋆ − λ).

We now consider an opponent with a weakly increasing development rate.

Lemma OA.2.7. Let h ∈ H be weakly increasing. Then, V1(t;h) and V0(t,h) are weakly

decreasing in t.

Proof. Note that

V1(t;h) =(λHΠ− c) ·
∫ ∞

t

e−
∫ s
t (h(u)+λH) du ds ≤ (λHΠ− c) ·

∫ ∞

t

e−(h(t)+λH)(s−t)ds =
λHΠ− c

h(t) + λH

.

From (HJB1), we have

V ′
1(t;h) = −(λHΠ− c) + (λH + h(t)) · V1(t;h) ≤ 0. (OA.2.16)

Therefore, V1(t;h) is decreasing in t.

Next, let σ∗ be a policy satisfying V0(t;h) = v0(t;σ
∗,h). Note that for all s ≥ t,

V0(s;h) ≥ v0(s;0,h) > 0 from Π > c/λL. Additionally, from (HJB0),

(1− σ∗(s))λL(Π− V0(s;h)) + σ∗(s)µ(V1(s;h)− V0(s;h)) ≥ λL(Π− V0(s;h))

⇒ σ∗(s) · µ · V1(s;h) + (1− σ∗(s)) · λLΠ− c

≥ σ∗(s) · µ · V0(s;h) + (1− σ∗(s)) · λL · V0(s;h) + λL(Π− V0(s;h))− c

= (λLΠ− c) + σ∗(s) · (µ− λL) · V0(s;h) ≥ 0.
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Then, we have

v0(t;σ
∗,h) =

∫ ∞

t

{σ∗(s) · µ · V1(s;h) + (1− σ∗(s)) · λLΠ− c} · rh,σ∗(s; t)ds

≤
∫ ∞

t

{σ∗(s) · µ · V1(t;h) + (1− σ∗(s)) · λLΠ− c} · rh,σ∗(s; t)ds

≤ max
σ∈[0,1]

σ · µ · V1(t;h) + (1− σ) · λLΠ− c

(1− σ)λL + σµ+ h(t)

Let the solution of the maximization problem of the right hand side is σ̂. Then, we have

0 ≥c+ h(t) · V0(t;h)− {(1− σ̂)λL(Π− V0(t;h)) + σ̂µ(V1(t;h)− V0(t;h))}

≥c+ h(t) · V0(t;h)− max
σ∈[0,1]

{(1− σ)λL(Π− V0(t;h)) + σµ(V1(t;h)− V0(t;h))} = V ′
0(t;h).

Therefore, V0(t;h) is decreasing in t.

OA.2.5.2 Proof of Proposition C.3

Proof of Proposition C.3. It is sufficient to show that R(t;h) ≤ 0 implies ∂R
∂t
(t;h) < 0. Note

that
∂R

∂t
(t;h) = µ · (V ′

1(t;h)− V ′
0(t;h)) + λL · V ′

0(t;h).

By Lemma OA.2.7, we have V ′
0(t;h) ≤ 0.

By subtracting (HJB1) and (HJB0), we have

V ′
1(t;h)− V ′

0(t;h) = (λH + h(t))(V1(t;h)− V0(t;h))− (λH − λL)(Π− V0(t;h)).

If R(t;h) ≤ 0, we have

V1(t;h)− V0(t;h) ≤
λL

µ
(Π− V0(t;h)).
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By plugging this in, we have

V ′
1(t;h)− V ′

0(t;h) ≤(λH + h(t))
λL

µ
[Π− V0(t;h)]− (λH − λL)(Π− V0(t;h))

=
λL

µ
[h(t)− λ⋆] (Π− V0(t;h)).

From h(t) < λ⋆, we have V ′
1(t;h) − V ′

0(t;h) < 0. Then, by (OA.2.5.2), we have ∂R
∂t
(t;h) <

0.

OA.2.6 Equilibrium Characterization

OA.2.6.1 Useful Properties

Lemma OA.2.8 (Limit incentives). Let h ∈ H be increasing with h(t) → h̄. Then R(t;h) →

R(t; h̄).

Proof. First, we show that V1(t;h) converges to V1(0; h̄). Since h(t) ≤ h(s) ≤ h̄ for all s > t,

we can bound V1 by the value when the opponent has constant hazard rates h(t) and h̄.

V1(0; h̄) = V1(t; h̄) ≤ V1(t;h) ≤ V1(t;h(t)) = V1(0;h(t))

By continuity of V1(0;h) in h, and the fact that the upper-bound V1(0;h(t)) converges to

the lower-bound V1(0; h̄), we can apply the squeeze theorem to get V1(t;h) → V1(0; h̄). We

can obtain bounds for V0(t;h) using a similar logic. Since h(t) ≤ h(s) ≤ h̄,

V0(0; h̄) = V0(t; h̄) ≤ V0(t;h) ≤ V0(t;h(t)) = V0(0;h(t))

Using the continuity of V0(0;h) in h, as V0 is the maximum of continuous functions, and

applying the squeeze theorem, we obtain that V0(t;h) → V0(0; h̄).

Lemma OA.2.9. Let T be a finite time and consider a policy σ such that σ(t) = 1 for all

t > T . Then, hσ(t) → min{λH , µ}.
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Proof. From the evolution of beliefs, using that σ(t) = 1, we get that, for all t > T ,

ṗσ(t) = (1− pσ(t)) [µ− λH pσ(t)]

This evolution of beliefs gives us that pσ(t) converges to 1 when µ > λH and to µ/λH when

µ ≤ λH . Using this, together with σt = 0, in the hazard rate function and taking limits, we

obtain that limt→∞ hσ(t) = limt→∞ λH pσ(t) = λH ·min{1, µ/λH} = min{λH , µ}.

OA.2.6.2 Proof of Theorem 2 (a) : λ⋆ < λL.

Proof of Theorem 2 (a). Let (σA,σB) be a MDNE. Then, by MDR of σj, it must be that

hσj
is increasing. hσj

is also bounded by λH , and therefore it converges. We denote h̄ the

limit of hσj
(t) when t → ∞.

Note that h̄ ≥ λL: otherwise hσj
(t) < h̄ < λL for all t and, thus, it would be more

profitable for the firm to choose σ = 0, which induces a constant rate of development equal

to λL. By continuity, the relative attractiveness of research R(t;hσj
) converges to Rh̄ < 0,

where the inequality holds since h̄ ≥ λL > λ⋆. This implies that there is a time T such that

R(t;hσj
) < 0 for all t ≥ T . By Proposition C.1, it must be that σi(t) = 0 for all t ≥ T .

It remains to show that σi(t) = 0 for all t ≤ T , which follows immediately from applying

Proposition C.2.

Summarizing, (0, 0) is the unique candidate for MDNE. First notice that the policy 0

satisfies MDR since h0 is constant and equal to λL. Moreover, to check that (0, 0) is a Nash

equilibrium, notice that λL > λ⋆, which implies by Proposition 3.1 that developing with the

old technology is a best response.

OA.2.6.3 Proof of Theorem 2 (b): λ⋆ > min{µ, λH}.

We begin by obtaining an upper bound for the development rate for any policy with monotone

development rates.

Lemma OA.2.10. Let σ ∈ S be MDR. Then, hσ < min{µ, λH}.

Proof. First, observe that for any σ ∈ S and t ≥ 0, pσ(t) ≤ min{µ/λH , 1}. Suppose toward

a contradiction that there is a T such that pσ(T ) > min{µ/λH , 1}. Then, by continuity
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of pσ, there must be a t < T such that pσ(t) ∈ (min{µ/λH , 1},pσ(T )) and ṗσ(t) > 0.

However,

ṗσ(t) = µ(1− pσ(t))σ(t)− (λH − (1− σ(t))λL)pσ(t)(1− pσ(t))

≤ [µ− λH pσ(t)] (1− pσ(t)) < 0

Where the first inequality holds because the δ(σ, p), as defined in (5.1), is increasing in σ

and the second inequality holds because if pσ(t) > min{µ/λH , 1} is only possible if µ < λH

and pσ(t) > µ/λH .

Next we prove that for any policy σ satisfying MDR, the hazard rate hσ never exceeds

min{µ, λH}. First,

hσ(t) = pσ(t) · λH + (1− pσ(t)) (1− σ(t))λL︸ ︷︷ ︸
<λH

< λH

It remains to show that, when µ < λH , hσ(t) < µ. First, we can see that ṗσ(t) ≥ 0 implies

hσ(t) ≤ µ.

ṗσ(t) = [µσ(t)− (λH − (1− σ(t))λL)pσ(t)](1− pσ(t)) ≥ 0

Since pσ(t) < 1, this holds if and only if µσ(t) ≥ (λH − (1− σ(t))λL)pσ(t). In this case,

hσ(t) = (1− σ(t))λL + p(λH − (1− σ(t))λL) ≤ (1− σ(t))λL + σ(t)µ ≤ µ

Thus, hσ(T ) > µ implies ṗσ(t) < 0 for all t > T . pσ is bounded below by 0, thus it must

converge. Let p̄ be the limit of pσ(t) when t → ∞. Moreover, hσ increasing with decreasing

pσ implies that σ has to be decreasing as well. Since σ is bounded, it must converge as

well. Let σ̄ be the limit of σ(t) when t → ∞. However, δ is continuous at (p̄, σ̄) and δ(p̄, σ̄)

is bounded away from zero, which contradicts the limit of pσ.

Proof of Theorem 2 (b). Let h be the opponent’s equilibrium hazard rate. Since h is increas-

ing and bounded, it must be that it converges. Let h̄ be the limit of h(t) when t → ∞. Note

that, for all t, h(t) < h̄ < min{µ, λH} < λ⋆, where the first inequality holds by monotonicity
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of h, the second inequality by Proposition C.2, and the third inequality by assumption. By

applying Lemma OA.2.6, we obtain that R(t; h̄) > 0. Thus, by Lemma OA.2.8 there is a

time T such that R(t;h) > 0 for all t > T . Suppose toward a contradiction that R(s;h) < 0

for some s ∈ R+. Then, by Proposition C.3, it must be that R(s;h) < 0 for all s > T . Thus,

there is no such s and R(t;h) ≥ 0 for all t. This is true for both firms, so using Proposition

C.1, we have that (1, 1) is the only equilibrium candidate.

It remains to check that (1, 1) is a MDNE. First, observe that h1 is increasing, since

ḣ1(t) = λHṗ1(t) = λH(µ− λH p1(t))(1− p1(t)) and (µ− λH p1(t)) > 0 by Lemma OA.2.10.

By Lemma OA.2.9, h1 converges to min{µ, λH}, which is lower than λ⋆. Therefore, there

is a time T such that R(t;h1) > 0 for all t > T . Moreover, suppose toward a contradiction

that R(s;h) < 0 for some s ∈ R+. Then, by Proposition C.3, it must be that R(s;h) < 0

for all s > T . Thus, there is no such s and R(t;h) ≥ 0 for all t. Thus, by the verification

result, σ = 1 is a best response to h1 and (1, 1) is a NE.

OA.2.6.4 Proof of Theorem 2 (c): λ⋆ ∈ (λL,min{µ, λH}).

Lemma OA.2.11. Let λ⋆ ∈ (λL, λH), and let h be increasing with h(t) → λ⋆. Let T be the

first time at which h(T ) = λ⋆. Then R(t;h) > 0 for all t < T and R(t;h) = 0 for all t ≥ T .

Proof. First, note that h(s) = λ⋆ for all s ≥ T . Therefore, by Corollary 2, R(t;h) =

R(0;λ⋆) = 0 for all t ≥ T . Let T̂ be the first time it is profitable to use the old technology,

i.e. T̂ := inf{t ∈ [0,∞] : R(t;h) ≤ 0}. Observe that, since R(T ;h) = 0, it must be that

T̂ ≤ T . Next, we show that T̂ < T leads to a contradiction.

Suppose towards a contradiction that T̂ < T . By Proposition C.3, R(t,h) ≤ 0 for all

t ≥ T̂ . Additionally, in the proof of Proposition C.3, we show that R(t,h) ≤ 0 implies

R′(t,h) < 0, which gives R(T,h) < 0 which contradicts R(T,h) = 0.

The next lemma shows that if the opponent does research first (σj(t) = 1 for all t) it is

not a best-response to do direct development.

Lemma OA.2.12. Let λ⋆ ∈ (λL,min{λH , µ}). Then R(0,h1) > 0.

Proof. h1 is the development rate associated with the research policy (σ = 1). We can

compute the continuation value, at time zero, of doing direct development v0(0; 0,h1).
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v0(0; 0,h1) = Π

[
λL

λL + µ
+

µ

λL + µ
· λL

λL + λH

]
− c

[
1

λL + µ
+

µ

λL + µ
· 1

λL + λH

]

The first bracket captures the probability of the firm winning the race. The firm can win by

developing before the opponent finds the new technology—which happens with probability

λL/(λL + µ)—or the opponent can find the new technology first, in which case the firm wins

with probability λL/λL+λH . The second bracket captures the expected duration of the race.

The expected time before the first breakthrough in the race is 1/(λL + µ). If the opponent

finds the new technology—which happens with probability µ/(λL + µ)—the race is extended

by 1/(λL + λH) in expectation. By doing some algebra, we obtain that:

v0(0; 0,h1) =
λLΠ− c

λL + µ
· λL + λH + µ

λL + λH

We can obtain V1(0, h1) by using the same logic, but replacing the development rate of

the incumbent technology λL with the development rate of the new technology λH .

V1(0;h1) =
λHΠ− c

λH + µ
· λH + λH + µ

λH + λH

Suppose toward a contradiction that direct development (σ = 0) is a best response toward

research first (σ = 1). This implies that V0(t;h1) = v0(t; 0,h1) and that R(t;h1) ≤ 0 for all

t. However,

R(0;h1) = µ(V1(0;h1)− V0(0;h1))− λL(Π− V0(0,h1))

=
c ((λ⋆ − λL) (2λH + µ) + λL (λH − λ⋆))

2λH (λH + µ)

+ µ · (λLΠ− c) · (λ⋆ − λL) (2λH + µ+ λL) + λL (2λH + λL − λ⋆)

2 (λH + µ) (λH + λL) (µ+ λL)
> 0

Where the inequality uses that λLΠ− c > 0 and that λ⋆ ∈ (λL, λH).

Lemma OA.2.13. Let λ⋆ ∈ (λL,min{λH , µ}) and let (σA,σB) be a MDNE. Then hσA
(t)

and hσB
(t) converge to λ⋆.
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Proof. First, note that hσi
is weakly increasing and bounded above by λH . Thus, hσi

(t)

must converge. Let h̄i be the limit of hσi
(t) when t goes to infinity.

Suppose towards a contradiction that h̄i > λ⋆. Then, by Lemma OA.2.8, R(t;hσi
)

converges R(0; h̄i). Since h̄ > λ⋆, applying Lemma OA.2.6, we get that R(0; h̄i) < 0. Thus,

there is a time T for which R(t;hσi
) < 0 for all t > T . This implies that σj = 0 for all t > T

and moreover, by Proposition C.2, σj = 0. Therefore, hσj
= h0 = λL. Since λL < λ⋆, it

must be, by OA.2.6, that R(t;λL) > 0. Thus, since σi is a best-response, σi = 1. However,

(σi,σj) = (0, 1) is ruled out as an equilibrium by Lemma OA.2.12. Therefore, there cannot

be an equilibrium in which one of the development rates converges to a rate greater than λ⋆.

Suppose towards a contradiction that h̄i < λ⋆. Then, by Lemma OA.2.8, R(t;hσi
)

converges to R(0; h̄) > 0. Thus, there is a time T such that R(t,hσi
) > 0 for all t > T .

Since σj is a best-response, it must be that σj(t) = 1 for all t > T . By Lemma OA.2.9, hj

converges to min{µ, λH} > λ⋆. However, we showed that this was not possible.

Proof of Theorem 2 (b). Suppose that λ⋆ ∈ (λL,min{λH , µ}) and (σA,σB) is a MDNE.

By Lemma OA.2.13, it must be that hσA
and hσB

converge to λ⋆. For i = A,B, let

Ti = sup{t : hσi
(t) < λ⋆} and let T = min{TA, TB}.

Suppose that TA < TB. By Lemma OA.2.11, we know that R(t;hB) > 0 for all t < TB.

This means that σA(t) = 1 for t ∈ (TA, TB). This, however, contradicts the fact that hσA
is

constant and equal to λ⋆ on that interval:

ḣσA
= ṗσA

= (µ− λH pσA
(t))(1− pσA

(t))λH > 0 ∀t ∈ (TA, TB)

Thus, TA = TB = T with σi(t) = 1 for t < T .

For s > T and i ∈ {A,B}, we have hσi
(s) = λ⋆. Using the definition of hσi

, we have

that

λ⋆ = λH pσi
(s) + λL(1− pσi

(s))(1− σ∗(s)),

or equivalently,

1− σ∗(s) =
λ⋆ − λH pσi

(s)

λL(1− pσi
(s))

. (OA.2.17)
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From the evolution of beliefs, we have that for every s > T

ṗσi
(s) =(1− pσi

(s))
[
µ− λH pσi

(s)− (1− σi(s))(µ− λL pσi
(s))

]
=− µ

λL

(λ⋆ − λL) + 2λ⋆ pσi
(s) = 2λ⋆(pσi

(s)− p⋆).

If there is an s > T such that pσi
(s) ̸= p⋆, then the solution of the above differential

equation diverges. Therefore, pσi
(s) = p⋆ for all s ≥ T . Using this, in conjunction with

ṗσi
(s) = 0, we obtain

σi(s) =
(λH − λL)pσi

(s)

µ− λL pσi
(s)

=
(λH − λL)p⋆
µ− λLp⋆

= σ⋆ for all s ≥ T .

By Lemma OA.2.11, we have that σA(s) = σB(s) = 1 for all s < T . Finally, the fact

that p1(T ) = p⋆ is given by the continuity of the probability function pσ. Therefore, both

firms playing the stationary fall-back policies is the only candidate for a MDNE. Moreover,

Lemma OA.2.11 implies that the stationary fall-back policy is the best response when the

rival plays the same policy, thereby constituting a MDNE.
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