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Abstract

We study the problem of a principal who conditions their actions on the outcomes

of a competitive market as a proxy for an unobserved payoff-relevant state. Agents

in the market have private information about the state, and their choices reflect both

their beliefs about the state and their expectations of the principal’s actions. This

introduces two-way feedback between policy and the market. In a general setting, we

characterize the set of joint distributions of market outcomes, principal actions, and

states that can be implemented in equilibrium by a principal with commitment power.

We focus in particular on implementation under constraints imposed by concerns about

manipulation and equilibrium multiplicity. Our characterization of the implementable

set admits a tractable representation, and significantly simplifies the principal’s design

problem. We apply our results to study bailout policies.
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Consider a mechanism design problem in which a principal wishes to learn about

an unknown state before taking an action, but information about the state is dispersed

among a large number of agents. In theory, the principal could contract individually

with each of the agents to elicit their private information. I practice, this may be diffi-

cult if each agent has only limited information about the state, and the principal must

therefore communicate with a large number of agents in order learn meaningfully.

Suppose however that the agents in question play some game, which produces an

observable outcome. Call this game a market, and the outcome a price. One of the

fundamental insights of information economics, going back at least to Hayek (1945),

is that market outcomes can aggregate dispersed information. Thus the principal may

be able to learn about the state by observing the price, without the need to contract

separately with each agent. Indeed, policy makers facing uncertainty often use, or are

encouraged to use, market outcomes, such as prices in financial markets, to inform

their decisions.

This paper studies the general implementation/mechanism design problem of us-

ing market outcomes to inform decision making in settings where there is a feedback

from policy to markets. To fix ideas, consider a government agency (the principal)

deciding how much support to offer to a distressed company. If the company’s shares

are publicly traded, the principal may use the share price to learn about the com-

pany’s unknown fundamentals and inform its bailout decision. The difficulty is that

the information revealed by the share price depends on the joint distribution of prices

and fundamentals, which is an equilibrium object. In particular, investors respond

to the anticipated level of intervention by the principal, as well as their own pri-

vate information. The principal must account for this feedback effect when drawing

inferences from the price.

We study a model in which a principal commits ex-ante to a decision rule which

specifies the principal’s action as a function of the price in a competitive market.1

1In general the “price” could be any one-dimensional market outcome, such as the unemployment
rate or order volume.
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We adopt a general approach to modeling the market, which nests a wide range of

market micro-structures. The equilibrium market price depends on both an unknown

state and the anticipated action of the principal. The principal’s payoff can be any

function of the joint distribution of the state, price, and principal action.

Such market-based policies face a number of practical challenges. For one, they

may be vulnerable to manipulation by market participants. For example, investors

can distort their demands to shift the share price, and by extension influence the

principal’s action.2 Additionally, the feedback loop between the principal’s action

and the endogenously determined share price can exacerbate issues of equilibrium

multiplicity and induce non-fundamental market volatility (Woodford, 1994). These

concerns should be accounted for when designing policy.

Feedback effects in market-based policy, and the accompanying issues or manipula-

tion and equilibrium multiplicity, have been previously studied in various applications

(see the literature review below). Our conceptual innovation is to bring a mechanism-

design/implementation perspective to the general problem of market-based policy

making. From a design perspective, it is natural to first ask what exactly the princi-

pal can achieve by using a market-based decision rule (a map from prices to actions).

In other words, what is the feasible set of outcomes? In particular, what joint distri-

butions of states (e.g. company fundamentals), prices, and principal actions (level of

support) can the principal implement, i.e. induce in equilibrium?

Contribution

The current paper makes four major contributions relative to the existing litera-

ture. First, we provide a general framework for studying market-based interventions

in environments with feedback effects. We do this by deriving a convenient way to

succinctly summarize equilibrium outcomes in a market via an invariant represen-

tation (Section 1.1 and Appendix A). This approach is applicable to a wide range

2If the market is competitive and agents are small, their ability to manipulate the price will
be limited. However the extent to which they can manipulate the principal’s action will depend
endogenously on how sensitive the principal’s decision rule is to the price.
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of competitive market structures, including the canonical noisy rational expectations

equilibrium model of Grossman and Stiglitz (1980) which has been widely used to

study market-based policy.

Second, we use this framework to fully characterize the feasible set in outcome

space. An equilibrium induces a joint distribution of states, prices, and principal

actions. Equivalently, the equilibrium outcomes can be described by the marginal

functions mapping states to principal actions and prices, which we refer to as the

action function and price functions respectively. We fully characterize the set of such

joint distributions of states, prices, and principal actions that can be implemented

by a principal with commitment power. More importantly, given the practical con-

cerns of market manipulation and equilibrium multiplicity, our main characterization

results (Section 2.5) characterize the set of joint distributions that can be induced

as the unique equilibrium using a decision rule that satisfies a large-market notion

of robustness to manipulation. The results provide novel insights into the interaction

between feedback effects, equilibrium multiplicity, and market manipulation.

This characterization can be viewed as an answer to an implementation question:

we characterize the set of fully implementable social choice functions, i.e. maps states

to actions and prices, under a large-market incentive constraint. This characterization

is also useful as the first step in solving a mechanism design problem. Rather than

optimize over decision rules mapping prices to principal actions, our characterization

results allow us to reformulate the principal’s problem as the much simpler one of

choosing an action function (mapping the state to the principal’s action) subject to a

simple implementability constraint. We show that in many applications, it is sufficient

for the principal to choose the action function subject only to the constraint that the

induced equilibrium map from states to prices is monotone.3

Third, we show that the constraints of unique implementation and robustness to

3Existing analyses of market-based policy design optimize over the space of decision rules (see
for example Hauk et al. (2020)). Generally, this approach requires one to impose restrictions on
the environment and parameterize the space admissible decision rules in to solve for equilibrium
outcomes in closed form as a function of decision-rule parameters.
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manipulation imply a natural notion of robustness to model misspecification (Sec-

tion 3). This means the principal’s payoff is not highly sensitive to their potentially

limited understanding of market fundamentals. Finally, the results also allow us to

analyze optimal policy when the requirement of unique implementation is relaxed

(Section 3). In particular, we use our characterization of the implementable set to

show that if the principal takes a worst-case view of equilibrium multiplicity then the

restriction to unique implementation is generally without loss of optimality.

In Section 4, we apply our results to study the design of market-based bailout

policy. We show how the principal must moderate intervention to account for ma-

nipulation and multiplicity concerns, and clarify the trade-off between the optimal

actions and the efficiency of information aggregation.4

Related literature

Formally, this paper is one of mechanism design and implementation theory (see

Jackson (2001) for an overview). In the language of this literature, we are interested in

full implementation of a social choice function under a large-market notion of incen-

tive compatibility. The no-manipulation criterion is similar in spirit to large-market

notions of IC, such as those of Budish (2011) and Azevedo and Budish (2019), in

that agents are assumed to be price takers and we require only a limiting notion of

robustness to small manipulations. The connection between robustness to manipu-

lation, equilibrium uniqueness (i.e. full implementation), and structural uncertainty,

discussed in Appendix D.1, parallels Oury and Tercieux (2012), albeit in a very dif-

ferent setting.

The distinguishing feature of the current paper relative to the design/implementation

literature is that the interaction between the principal and the agent is mediated by a

market: the principal cannot observe the actions of the agents directly, but instead can

only condition their action on the aggregate market outcome (price). In this sense, the

4Further applications to carbon cap-and-trade and monetary policies are presented in Ap-
pendix G.
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paper is also related to the literature on mechanism design with limited communica-

tion, such as Mookherjee and Tsumagari (2014), with the distinguishing feature that

agent’s “individual messages” to the principal are aggregated into a single “aggregate

message”, the price, via a market.

Separately, in terms of applications, the paper is also related to a large literature

in macroeconomics and finance on the two-way feedback between financial markets

and the real economy, beginning with Baumol (1965). We are by no means the first

to recognize the presence of two-way feedback effects when policy is conditioned on

markets. These forces are important in many contexts, such as monetary policy. Im-

portant contributions include Bernanke and Woodford (1997), Ozdenoren and Yuan

(2008), Bond and Goldstein (2015), Glasserman and Nouri (2016), Boleslavsky et al.

(2017), and Hauk et al. (2020). For a survey of this literature see Bond et al. (2012).5

Broadly, our contribution relative to this literature is to bring a design and imple-

mentation perspective to policy-making in these settings. We formalize the problem

of policy design under commitment in a general setting and provide a full characteri-

zation of feasible policy outcomes, while accounting for manipulation and equilibrium

multiplicity concerns. This implementation question has not previously been studied

in the literature. Thus while we study similar environments, our analysis is formally

quite different from the literature on feedback effects in macroeconomics and finance.

Others have noted that policy based on market outcomes may be vulnerable to

manipulation. Goldstein and Guembel (2008) study manipulation by strategic traders

when firms use share prices in secondary financial markets to guide investment de-

cisions. In Lee (2019) a regulator uses stock-price movements of affected firms to

determine whether or not to move forward with new regulation. The discontinuous

nature of the policy considered in their model opens the door to manipulation. Moti-

vated by these concerns, we focus on policies that are robust to small manipulations.

The literature has also documented the fact that feedback effects may induce

5Closely related is the literature on prediction markets and conditional decision markets, e.g.
Teschner et al. (2017), in which a principal conditions their actions on a market outcome.
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equilibrium multiplicity (see among others Dow and Gorton (1997), Bernanke and

Woodford (1997), Angeletos and Werning (2006), Glasserman and Nouri (2016)).

However necessary and sufficient conditions for a policy to induce a unique equilibrium

have not been established in a general setting, nor under the additional constraint of

robustness to manipulation. To our knowledge, we are the first to study market-based

policy under commitment subject to equilibrium uniqueness as a constraint.6

On a methodological level, our results characterizing the implementable set in

outcome space (the set of action and price functions) greatly simplify the principal’s

problem. Hauk et al. (2020) develop variational techniques optimizing directly over

the space of decision rules in settings with feedback effects. In contrast, the problem

of optimizing over action and price functions is often much more tractable, allowing

for flexible policy design and weaker assumptions on the market.

1 Model

The baseline model consists of the following primitive objects.

i. A state space Θ, which is a convex subset of a topological vector space, endowed

with the Borel σ-algebra and a probability measure ν.

ii. A convex and compact set A of principal actions, a subset of a Banach space.

iii. A set P = R of prices.

iv. A set W ⊆ AP of admissible decision rules.7

The setW embodies restrictions on the principal’s policy. For example, the princi-

pal might be constrained to use only continuous mappings from P to A.8 We assume

that all constant policies are admissible. Formally, letting Ma be the constant decision

rule for action a ∈ A, we have Ma ∈ W for all a ∈ A. The timing of interaction is as

6A related concern is equilibrium non-existence, which is a particularly salient issue when the
principal lacks commitment power, see for example Bond et al. (2010) and Siemroth (2019). These
papers focus on the fact that (in the language of the current paper) if the first-best action and
price functions violate measurability (i.e. there are distinct states with the same price but different
principal actions) then the first-best is not an equilibrium outcome, and an equilibrium may fail to
exist. Siemroth (2019) identifies conditions for existence in a model without commitment.

7AP is the set of functions from P to A.
8We discuss the relationship between robustness to manipulation and a relaxed notion of conti-

nuity in Section 2.1.
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follows.9

1. The principal publicly commits to a decision rule M ∈ W .10

2. A “market game” is played and a price is determined in equilibrium.

3. If the price is p, the principal takes the action M(p).

It remains to specify what precisely is meant by the “market game”. This is the final

primitive feature of the model.

1.1 The market

Defining the market in suitable generality takes some work, but the upside is that

we are able to treat many different types of markets within a unified framework. To

preview, the following are examples of markets covered by our analysis.

1. Private values. A continuum of price-taking agents have private values for an

asset. Let xi(si, p, a) be the demand of agent i with value si when the price is p

and the agent anticipates the principal will take action a. Assume p 7→ xi(si, p, a)

is strictly decreasing for all si, a. Let θ = {si}i∈I be the profile of types. An

equilibrium is defined by a price function P : Θ 7→ P satisfying market clearing

0 =

∫
i∈I

xi(si, P (θ),M ◦ P (θ))di.

For example, the agents may be firms trading carbon credits (as in Appendix G.1).

The firm’s type is it’s abatement cost (cost of reducing emissions). The princi-

pal’s action is some policy that affects the abatement cost.

2. Labor market. There are a continuum of firms and workers. The principal is a

government agency which commits to a map M from the unemployment rate p

to a level of unemployment benefits a. Each worker’s search effort is determined

by the level of benefits, and their probability of being unemployed depends

on their search effort and labor demand conditions θ. Given benefit level a,

9Alternatively, one can interpret the model as representing the steady state of a repeated inter-
action, in which steps 2 and 3 alternate indefinitely.

10In Appendix G.1 we briefly discuss the implications of our model for the no-commitment case.
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worker i’s probability of being unemployed can therefore be summarized by a

function ui(a, θ). An equilibrium is defined by a function P : Θ 7→ P such that∫
i
ui(M ◦ P (θ), θ) = P (θ).11

3. Common values, imperfect information. Consider a standard rational expecta-

tions equilibrium (REE) model of an asset market. The asset’s ex-post value

given state θ ∈ R and principal action a is π(θ, a). Each agent observes a private

signal si = θ+ εi. Agents then submit a demand schedule Xi(p, si) to a market

maker, and have utility ui : R→ R. Given a decision rule M , P is called a REE

price function iff there exists a function Xi(p, si) s.t.

(a) Xi(p, si) = arg maxxE
[
ui
(
x · (π(M(p), θ)− p)

)
| si, P (θ) = p

]
, and

(b)
∫
Xi (PM(θ), si) di = 0 ∀ θ ∈ Θ.

4. Noisy REE (Grossman and Stiglitz, 1980). The model is as in the previous

example, except that there is aggregate uncertainty in the form of a supply

shock z. This is a workhorse model of asymmetric information in asset markets.

The asset value is π(a, ω) and signals are si = ω + εi. The state includes the

payoff-relevant state and supply shock: θ = (z, ω). Market clearing means

∫
Xi (P (θ), si) di = z ∀ θ ∈ Θ.

We now define formally the conditions characterizing the set of markets to which

our analysis applies. After the principal chooses the decision rule M , a set of market

participants play some continuation game. The actions of the market participants

in this continuation game, together with the state, determine a price in P . Let this

relationship be represented by P̃ (θ, ψ) where ψ is a profile of actions taken by the

market participants.

The game is paired with a solution concept, which for each M defines a set of

equilibria in the continuation game. We call the game/solution-concept pair a market

if for any decision rule M and equilibrium strategy profile ψ∗M , the map θ 7→ P̃ (θ, ψ∗M)

11We can interpret this fixed-point condition as a steady-state condition in a dynamic model.
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is a deterministic function.12 In other words, given a decision rule M , for any equi-

librium in the market there exists a price function P : Θ → P describing the price

which realizes in each state. We maintain the assumption that there exists at least

one equilibrium for every constant decision rule, i.e. every fixed principal action.

There may be multiple equilibria given M , with distinct price functions. We say

that P is an equilibrium price function given M if it is the price function in some

equilibrium given decision rule M . The fact that the set of equilibrium price functions

depends on M is the source of the feedback effect.

We restrict attention to the subset of markets that are “competitive”. Loosely, a

market is competitive if agents behave as price takers. We show that many competitive

markets possess the following convenient property.

Definition 1. A market admits an invariant representation given (W , P̂), where

P̂ ⊂ PΘ, if there exists a function R : A×Θ→ P such that

1. If P is an eq. price function given M ∈ W , then P (θ) = R(M ◦ P (θ), θ) ∀θ.

2. If P ∈ P̂ and P (θ) = R(M ◦ P (θ), θ) for all θ then P is an eq. price function

given M .

The key general observation for our analysis is that, for the purposes of choosing

M , a market with an invariant representation can be fully summarized by R: that is,

P ∈ P̂ is an equilibrium price function given M iff P (θ) = R(M ◦ P (θ), θ).13

It may be that a given market only admits an invariant representation given a

P̂ that is a strict subset of PΘ, and W that is a strict subset of AP . In this case,

the extent to which the property is useful depends on whether P̂ and W contain

12The assumption that this function is deterministic just means that θ captures all the relevant
uncertainty in the market. This definition of a market does not imply that the agents’ strategies
must be measurable with respect to the state. The state may contain dimensions that are not
directly payoff relevant for the principal. For example, in a noisy REE model of an asset market,
as in Grossman and Stiglitz (1980), the state will include the supply shock and the “payoff relevant
state”, but not the agents’ private signals. In other settings, the state can represent the entire profile
of agents’ private signals, as in Jordan (1982).

13Moreover, since R does not depend on the decision rule M , it can be estimated using data from a
market in which the principal’s action is not conditioned on the price, or in which some other decision
rule was used. Thus a principal contemplating the introduction of a market-based decision rule can
use historical aggregate data to estimate the function R and design the decision rule, without being
subject to the Lucas critique that a change in the policy regime will change the relationship between
the fundamentals (state and principal action) and the price (Lucas et al., 1976).
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the relevant price and action functions (see Appendix A for further discussion). The

smaller the sets (W , P̂), the easier it is to satisfy the conditions’ definition. Indeed,

if R is an invariant representation given (W ′′,P ′′) and W ′ ⊂ W ′′, P ′ ⊂ P ′′, then R

is also an invariant representation given (W ′,P ′). On the other hand, the smaller is

(W ,P), the less useful the property.

Determining whether or not the market admits an invariant representation with

respect to the desired (W , P̂) is the first step in our analysis. Based on Definition 1, it

is not immediately obvious which markets admit an invariant representation. In part,

this is because of the existential qualifier in the definition. In Appendix A we provide

an axiomatic characterization of the markets that admit an invariant representation.

This makes it relatively easy to check whether a given market satisfies this property.

In most applications it is enough, for practical purposes, that there exists a func-

tion R which describes the equilibrium for almost all states. The market admits an

a.e. invariant representation given (W , P̂) if Condition 1 in Definition 1 holds for

almost all θ (with Condition 2 unchanged). To facilitate applications, we show the

following.

Proposition 1. In the above examples14

• Markets 1-2 admit an invariant representation in (AP ,PΘ).

• Market 3 admits an a.e invariant representation in (AP ,PΘ). The a.e. qualifier

can be dropped if θ 7→ π(a, θ) is strictly increasing for all a.

• Market 4 admits an a.e invariant representation, where W is the set of decision

rules that induce a unique equilibrium, and P̂ is the set of price functions with

“non-intersecting level sets”.15 (Under the assumptions of CARA utility, π affine

in ω, additive normal signal structure and normally distributed supply shocks,

which are standard in the literature.)

14Many of the parametric assumptions imposed on these markets can be relaxed. See Appendix F.2.
15These sets W and P are discussed in detail in Section 4.2. We are interested in unique im-

plementation, so the restriction to such decision rules is without loss. Moreover, we show that the
“non-intersecting level sets” property is a necessary condition for unique implementation, and so the
restriction to this set of price functions is also without loss.
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Proof. In Appendix C.1.

These results make use of the axiomatic characterization in Appendix A. Again,

the important takeaway from Proposition 1 is that in all the markets in question, we

know that P is an equilibrium price function given M ∈ W if P ∈ P̂ and P (θ) =

R(M ◦ P (θ), θ); and that in any equilibrium this condition holds almost everywhere

(so for design purposes, we can focus on equilibria such that it holds for all θ).

2 Main results

Given a decision rule M and an associated equilibrium price function P , let Q :=

M ◦ P be the equilibrium action function. That is, Q is the induced equilibrium

map from states to actions, and, together with the prior distribution on Θ, the pair

(Q,P ) fully describes the equilibrium joint distribution of states, prices, and principal

actions. Since this joint distribution is ultimately what the principal cares about, it is

convenient to formulate the design problem directly over price and action functions,

i.e. the equilibrium outcomes, rather than the decision rule M . In order to do this, we

must characterize the set of (Q,P ) that are equilibrium outcomes for some M ∈ W .

This is the focus of this section.

Definition 2. (Q,P ) is implementable in W if there exists M ∈ W such that P is

an equilibrium price function given M and Q = M ◦ P . Say simply that (Q,P ) is

implementable if it is implementable in AP .

Observation 1. If the market admits an invariant representation R given (AP ,PΘ)

then following are equivalent16

i. (Q,P ) is implementable.

ii. Q(θ) 6= Q(θ′)⇒ P (θ) 6= P (θ′), and P (θ) = R(Q(θ), θ) for all θ.

We refer to Q(θ) 6= Q(θ′) ⇒ P (θ) 6= P (θ′) as the measurability condition, and

P (θ) = R(Q(θ), θ) for all θ as the market-clearing condition. The “only if” direction

16In fact, the converse holds as well: if (i) and (ii) are equivalent then R is an invariant represen-
tation of the market.
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of Observation 1 characterizes the set of implementable (Q,P ) for markets that admit

an invariant representation.

Unfortunately, implementability in Observation 1 relies on the ability to use any

decision rule. However, some of these may have undesirable properties, such as vul-

nerability to manipulation and equilibrium multiplicity. We therefore refine the im-

plementability criterion to address these concerns.

2.1 Manipulation

Market manipulation is a salient concern in many market-based policy-making en-

vironments. Agents in the market may attempt to manipulate the price in order to

influence the principal’s action by buying/selling an asset, releasing false information,

or other means.17 While, in the models we consider, agents are generally assumed to

behave as price takers, we view the price-taking assumption as an idealization of a

world in which agents are small, but may have some non-zero market power. The

ability of a small (but not infinitesimal) agent to manipulate the principal depends

on the sensitivity of the principal’s decision rule mapping prices to actions. If, for

example, the decision rule is discontinuous, then an agent will be able to induce a

significant change in the principal’s action by manipulating the price, even if their

individual price impact is small.

In order to maintain consistency between the idealized model in which agents

are price takers and one in which agents are small, but may have a non-zero price

impact, it seems natural to restrict the principal to use a continuous decision rule.

However the restriction to everywhere-continuous decision rules is stronger than is

needed to address these concerns, and may come at a cost.18 If a discontinuity in the

decision rule of the principal occurs at a price that is far from any which could arise

in equilibrium then manipulation via a small price impact will not be possible.

Definition 3. A decision rule M : P → A is essentially continuous if, for any

17Goldstein and Guembel (2008) discusses manipulation of this sort.
18Appendix G.2 studies an example in which discontinuities away from equilibrium prices are

necessary for unique implementation.
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equilibrium price P given M , M is continuous on an open set containing the closure

of P (Θ).

In other words, an essentially continuous decision rule can have discontinuities

only where there are no nearby equilibrium prices. Let M be the set of essentially

continuous decision rules. We also refer to such decision rules as “robust to manipula-

tion”. Importantly, essential continuity (or even continuity) of the decision rule does

not imply that equilibrium price functions must be continuous.

2.2 Multiplicity

A second concern is that the dependence of the principal’s action on the endogenously

determined price can lead to multiple equilibria, since there may be multiple self-

fulfilling beliefs that agents in the market can hold about what action the principal

will take (Bernanke and Woodford, 1997). This type of multiplicity is pervasive in

market-based policy problems. In reality, the principal is often unable to select which

equilibrium will be played. Moreover, the fact that there are multiple equilibria could

lead to non-fundamental volatility in the market, as agents coordinate on one or

another belief about what action the principal will take. This type of volatility is a

first-order concern in many settings in which market-based policies are used, such as

monetary policy (Woodford, 1994). We are therefore interested primarily in unique

implementation.19

Definition 4. M is robust to multiplicity if there is at most one equilibrium price

function P given M .

Unique implementation is desirable in many settings, especially those in which

non-fundamental volatility is a first-order concern. Moreover, we show in Section 3

how this restriction is without loss of optimality when the principal takes a worst-case

approach to equilibrium multiplicity.

19In other words, fully implementable of a social choice functions.
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2.3 Robust implementation

With the definitions of robustness to manipulation and multiplicity, we are ready to

define the refined implementation criterion, which is our primary focus.

Definition 5. Let W∗ be the set of essentially continuous decision rules that are

robust to multiplicity. We say that (Q,P ) is continuously uniquely implementable

(CUI) iff (Q,P ) is implementable in W∗.

In some cases, it will also be useful to consider a slightly weaker notion of robust-

ness to multiplicity. The idea is that the principal might be willing to have multiple

equilibria as long as different equilibria lead to the same outcomes almost surely.

Definition 6. A decision rule M is weakly robust to multiplicity if for any two equi-

librium price functions P, P ′ given M it holds that P (θ)−P ′(θ) = 0 for almost every

state θ.

Definition 7. Let W− be the set of essentially continuous decision rules that are

weakly robust to multiplicity. We say that (Q,P ) is continuously weakly uniquely

implementable (CWUI) iff (Q,P ) is implementable in W−.

Before proceeding to the characterization of CUI and CWUI pairs (Q,P ) we

illustrate, with a simple example, the issues that arise because of the interaction

between feedback effects, equilibrium multiplicity, and robustness to manipulation.

2.4 A brief illustration: Bailouts

To fix ideas consider the following application, which we return to in greater detail

in Section 4. The principal must choose a level of support a ∈ A = [0, 1] to provide

to a public company. The company’s prospects θ ∈ Θ ⊆ R (representing the demand

environment, competition, future costs, etc.) are unknown. Higher states represent

better prospects: the ex-post cash flow from a share of the company is π(a, θ) =

β0(a) + β1(a)θ, where β0 is increasing and β1 is strictly positive and decreasing.20

20Linearity of the cash-flow is not important here, but is useful in the noisy REE model of Sec-
tion 4.2, and therefore maintained for clarity.

15



In other words, greater intervention reduces the sensitivity of the cash flow to the

state. As a result, greater intervention has a larger positive impact on cash flow

when the state is low, and may decrease this value when the state is high.21 For

simplicity, assume also that β′0(a)/β′1(a) is constant, so there exists a state θ∗ such

that a 7→ π(a, θ∗) is increasing below θ∗ and decreasing above.

Shares are traded in a competitive stock market, as in Example 3 in Section 1.1.

In Proposition 1 we show that there exists an invariant representation R for this type

of market. In fact, for this example the equilibrium price must be fully revealing, so

R = π and thus θ 7→ R(a, θ) is continuous and strictly increasing for every a, and

a 7→ R(a, θ) is increasing for states below θ∗, and decreasing above.

The principal’s ex-post payoff is u(a, θ) = (1− a)bθ− ca. Thus, they would like to

choose the maximal intervention a = 1 if θ ≤ − c
b
, and a = 0 otherwise. We refer to

this as the first-best action function. We say that the principal is hawkish if − c
b
> θ∗,

and dovish if − c
b
< θ∗.22 The price functions corresponding to the first best action

functions are illustrated by the dotted blue lines in Figure 1.23

In the hawkish case, the first best is implementable. In fact, we show that it is CUI:

it can be implemented uniquely with a decision rule that is robust to manipulation.

However the dovish first-best is not implementable: the first-best action function is

not measurable with respect to the price for prices between p′ and p′′.24

21This reflects the fact that investors view government involvement in the firm as reducing upside
when business prospects are good; for example because the bailout involves the government taking
an active role in management, or carries negative stigma (Che et al., 2018). a 7→ π2(a, θ) will also be
decreasing if the bailout takes the form of forgivable loans, where the ex-post liability is increasing
in the state (which will be revealed ex-post).

The German government’s 2020 bailout of Lufthansa illustrates this pattern. In this case, one large
shareholder threatened to veto the proposed bailout. This shareholder was reportedly concerned
that the government stake would make it harder to restructure and cut jobs. On the other hand, the
supervisory board chairman emphasized Lufthansa’s dire prospects: “We don’t have any cash left.
Without support, we are threatened with insolvency in the coming days.” (Wissenbach and Taylor,
2020).

22If the principal is hawkish there are states in which the principal would like to intervene even if
investors perceive a negative impact on cash flows. This is the case if the social benefit of intervention
is large relative to the cost, for example, because the company is considered strategically important,
employs a large number of workers, or engages in production which has large technological spillovers.
Conversely, the principal is dovish when the social benefit or intervention is judged to be low relative
to the cost. In this case there are states in which the principal would like to forgo intervention even
though intervening would increase the cash flow.

23Given an action function Q, the corresponding price function is P (θ) = R(Q(θ), θ).
24In a similar example, Bond et al. (2010) observe that if the principal observes a sufficiently precise

exogenous signal then they can overcome the measurability issue, and restore implementability.
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Ω

price

−c/bθ∗

R(1, ·)

R(0, ·)

(a) Hawkish, implementable

Ω

price

−c/b θ∗

R(ā, ·)

R(0, ·)

p′
p′′

(b) Dovish, not implementable

Figure 1: First-best

What is a dovish principal to do? Notice that the “problematic” range of prices

(p′, p′′) is relatively small. One natural solution to the measurability problem is to

move away from the first best slightly so as to fix the measurability issue. Indeed, when

(p′, p′′) is small, this can be done with a relatively small perturbation to the action

function. Figure 2 illustrates the price function corresponding to the action function

which agrees with the first-best action function for all states except (θ′, θ′′). On (θ′, θ′′),

the action function specifies intermediate actions so as to induce the depicted price

function. If the interval (θ′, θ′′) has low probability, this modification provides a good

approximation to the first-best payoff, and is implementable by Observation 1.

−c/b

R(1, ·)

R(0, ·)

θ′ θ′′

p′
p′′

Figure 2: Restoring implementability

Without any concern for manipulation or a desire for unique implementation, the

optimal policy for a dovish principal may well take the form depicted in Figure 2. In
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fact, if the principal is concerned about either manipulation or equilibrium multiplic-

ity, but not both, it is easy to show that an action function nearly identical to that in

Figure 2 can be implemented. However, surprisingly, no nearby action function can

be implemented if both concerns are present, i.e. if the principal wants to implement

something close to first-best as the unique equilibrium using an essentially continuous

decision rule (by Theorem 1). We turn now to establishing this result.

2.5 Characterizing CUI outcomes

In this section, we establish that, when the market admits an invariant representation,

the defining feature of CUI and CWUI outcomes is a monotone price. Specifically, we

show that a monotone price function is necessary when the invariant representation

R is weakly increasing in the state (Theorem 1), and essentially sufficient under

additional mild conditions (Theorem 2).

For simplicity, we assume in this section that the market admits and invariant

representation in(AP ,PΘ). This assumption can be easily relaxed, and we do so in

Section 2.7. To simplify the statement of the results, we also assume that the state

space is an open bounded interval Θ = (θ, θ̄).25 We then extend the results to mul-

tidimensional Θ. We also assume that the invariant representation R is continuous

in (a, θ) and (weakly) increasing in the state θ for all actions. 26 Finally, we add

two technical conditions on the invariant representation at the extreme states. Let

R(a, θ) := infθ∈ΘR(a, θ) and R(a, θ̄) := supθ∈ΘR(a, θ). First, we assume that R con-

verges uniformly to the extremes. In other words, R(·, θn) converges uniformly as

θn → θ and θ̄. This guarantees that continuity is preserved for the limit functions

R(a, θ) and R(a, θ̄). Second, we assume that for all p ∈ P and θ ∈ {θ, θ̄}, the set of

actions for which R(a, θ) = p is the union of finitely many connected subsets of A.27

These technical assumptions are satisfied in all applications we consider.

25The results for closed θ are the same, except that it is necessary to modify the boundary
conditions in Theorem 2. We omit this result in the interest of brevity.

26Both monotonicity and continuity of R can be justified by natural assumptions on primitives in
many micro-foundations, as discussed in Appendix F.

27Given continuity, this assumption means that the market-clearing price at the extremes does
not oscillate too frequently (as a function of the action).
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Theorem 1 (Necessity). If (Q,P ) is CWUI, then P is monotone.

Proof. In Appendix B.

In other words, if M is essentially continuous and induces a price function P that

is non-monotone then M induces at least two equilibria with different equilibrium

prices for a positive mass of states. It is worth emphasizing that a CWUI P need not

be increasing; it may be monotonically decreasing, even when R is strictly increasing.

Theorem 1 reveals a surprising interaction between unique implementation and

robustness to manipulation. Singly, neither constraint imposes a substantive restric-

tion on the implementable set.28 Jointly, however, they have important implications

for what the principal can achieve (the price must be monotone).

The monotonicity condition of Theorem 1 bears no direct relation to the types of

monotonicity conditions that are common in the implementation literature (such as

Maskin (1999) and Myerson (1981)). These latter concern monotonicity (in various

forms) of the social choice function. This distinction should not be surprising, given

that the aggregate “price” has no immediate analog in the typical setting.

A monotone price function, together with the market-clearing condition P (θ) =

R(M ◦P (θ), θ), is nearly, but not exactly, sufficient for CUI. We require an additional

technical condition.

Definition 8. The action function Q satisfies boundary condition 1 (BC1) if there

are Q̄, Q ∈ A such that Q̄ = limθ→θ̄Q(θ) and Q = limθ→θQ(θ). Moreover, Q satisfies

boundary condition 2 (BC2) if it satisfies BC1, R(Q, θ) 6= inf P implies that R(·, θ)

doesn’t have a local maximum at Q, and R(Q̄, θ̄) 6= supP implies that R(·, θ̄) doesn’t

have a local minimum at Q̄.

Theorem 2. Assume R is strictly increasing in θ.29 Then (Q,P ) is CUI iff

28Suppose (Q,P ) is implementable. If we do not restrict to essentially continuous M , then we can
define M outside of P (Θ) to guarantee that no additional equilibria exist. If we are not concerned
about multiplicity, we can always define an essentially continuous M that approximates well the
decision rule needed to implement (Q,P ).

29In Proposition 11 we extend the result to weakly increasing R.
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1. P (θ) = R(Q(θ), θ) for all θ,

2. P is strictly monotone.

3. Q is continuous and satisfies BC1. Moreover, if P is decreasing, Q satisfies BC2.

Proof. In Appendix B.2.

2.5.1 Theorem 2: technical discussion

The first point in Theorem 2 is simply the market clearing condition that was already

necessary for implementation (Observation 1). It is worth noting that continuity of Q

is not implied by the continuity of M , but is instead a consequence of requiring unique

implementation. In Section 2.6 we show that by slightly relaxing to weak robustness

to multiplicity we get a characterization that allows for discontinuous Q, so we do not

view condition 3 as a critical characteristic of implementable pairs. The monotonicity

of P is the essential point.

Notice that for any (Q,P ) that is CUI, the continuity of Q implies continuity

of P on Θ, and thus P (Θ) must be convex. Given (Q,P ) satisfying condition 1 of

Theorem 2, and with P increasing, it is straightforward to construct an M that

continuously uniquely implements it: for prices in P (Θ) simply choose the action

that is consistent M(p) = Q ◦ P−1(p), and then use Q̄ for prices above supP (Θ) and

Q for prices below inf P (Θ). Moreover, this implies that if (Q,P ) is CUI and P is

increasing then it can be implemented by a continuous M .

When P is decreasing, the construction of M leaving actions constant for prices

outside of P (Θ) does not work. The last part of condition 3 of Theorem 2 guarantees

that there is a way to define a continuous M for prices slightly above supP (Θ) and

slightly below inf P (Θ) such that these prices can never occur in equilibrium.

Since Theorem 2 contains a strict monotonicity condition, the CUI set may not be

closed. Thus it is useful to introduce a notion of virtual optimality. Say that (Q,P )

is virtually CUI (virtually CWUI) if for any ε > 0 there exist CUI (CWUI) (Q′, P ′)

such that (Q,P ) is within ε of (Q′, P ′) in the sup-norm. Say that (Q,P ) is virtually
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optimal if it is optimal among either the virtually CUI or CWUI set.

2.5.2 Theorem 2: practical implications

In words, Theorem 2 characterizes the set of fully (i.e. uniquely) implementable action-

price function pairs, under the robustness to manipulation constraint. The result is

also useful as the first step in solving a mechanism design problem: we can optimize

directly over the space of continuous action functions Q, subject only to the constraint

that the induced price function is monotone (moreover, it is generally without loss of

optimality to ignore the continuity condition, as we show in Proposition 2). This is

a standard control problem analogous to the first step in Myerson (1981), where we

appeal to the revelation principle and the characterization of incentive compatibility

to transform the auction design problem into a control problem with a monotonicity

constraint. The alternative is to optimize directly over the decision rule (see for ex-

ample Hauk et al. (2020) and Lee (2019) for fruitful applications of this approach).

The downside of this approach is that one generally needs to make strong assump-

tions on the environment, and restrict attention exogenously to a parametric set of

decision rules, in order to solve for equilibrium outcomes in closed form as a function

of decision-rule parameters.

2.6 Characterizing CWUI outcomes

To characterize the set of CWUI outcomes, i.e. those (Q,P ) that are implemented by

a decision rule in W−, we make the assumption that the market is fully bridgeable.

Definition 9 (Full bridgeability). For any state θ ∈ Θ and actions a, a′ such that

R(a, θ) 6= R(a′, θ), there exists a continuous function γ : [0, 1]→ A such that

• γ(0) = a, γ(1) = a′.

• x 7→ R(γ(x), θ) is strictly monotone.

If A = [0, 1] then full bridgeability is satisfied iff a 7→ R(a, θ) is monotone for

every θ. For more general action spaces, weaker notions of monotonicity suffice.30

30For example, suppose the principal’s action consists of mixtures over a set of consequences, i.e.
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Proposition 2. Assume R is strictly increasing in θ and the market is fully bridge-

able. Then (Q,P ) is CWUI iff

1. P (θ) = R(Q(θ), θ) for all θ.

2. P is strictly monotone.

3. If Q is discontinuous at θ∗ then P is also discontinuous at θ∗.

4. Q is BC1. Moreover, if P is decreasing, Q is BC2.

Proof. In Appendix C.2

The main substantive difference between CUI and CWUI outcomes is that the

action function need not be continuous.

2.7 Multidimensional state space

Suppose that Θ is an open subset of RN , endowed with the usual product partial

order. When working with a one-dimensional state space, we were able to prove the

existence of an invariant representation given (AP ,PΘ) by imposing monotonicity of

some primitive objects, such as asset dividends, in θ (see Appendix F.2). The difficulty

with moving to a multi-dimensional state space is that we cannot in general identify

a complete order on Θ for which such monotonicity conditions hold. It is therefore

useful, for example for the application of Section 4.2, to relax the assumption that

the market admits an invariant representation given (AP ,PΘ).

We first introduce an additional condition: say the market has level sets represented

by a (possibly empty valued) set function L : A× P → 2Θ if M(p) = a implies that

there is an equilibrium with P (θ) = p for all θ ∈ L(a, p). We can think of the states

in L(a, p) as “payoff equivalent in equilibrium”, given action a.

Notice that if the market admits an invariant representation given (AP ,PΘ) then

there is an L that represents the level sets; define L(a, p) = {θ : R(a, θ) = p}. The

A = ∆(Z) for some finite set Z, where each consequence is associated with a value π(z, θ) (for
example, Z may be a set of conditions that the principal can attach to a bailout, and π the cash-flow
of the company). Fixing the state θ, any action a ∈ ∆(Z) induces a distribution over the set of values
π(Z, θ). If R(a′′, θ) > R(a′, θ) whenever the distribution induced by a′′ first-order stochastically
dominates that induced by a′, then the environment is fully bridgeable. In other words, a weak
monotonicity notion suffices for full bridgeability. This result, along with more general sufficient
conditions for bridgeability, is discussed in Appendix E, where we also relax the assumption.
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point of identifying L is precisely to relax the assumption that there is an invariant

representation given (AP ,PΘ).

Suppose M is a decision rule for which there exists a unique equilibrium. Let

(PM , QM) be the price and action functions in this equilibrium. Then it must be that

if PM(θ) = p then PM(θ′) = p for all θ′ ∈ L(QM(θ), p); if not then by definition of L

there is equilibrium multiplicity in the states L(QM(θ), p)\{θ′ : PM(θ′) = p}. Thus we

can define an invariant representation R for the market by R(a, θ) = {p : θ ∈ L(a, p).

This is a well-defined function iff there is a unique p such that θ ∈ L(a, p)}; in which

case we say that the market has unique level sets represented by L. In Appendix F.3

we show that it is satisfied in the noisy REE model.

Given a market with unique level sets represented by L, say that a price function

P has complete level sets if for all p ∈ P (Θ) there exists a ∈ A such that {θ ∈ Θ :

P (θ) = p} = L(a, p). Let P̃ be the set of price functions with complete level sets. Let

WU be the set of decision rules for which there exists a unique market equilibrium.

Then the preceding discussion is summarized by the following lemma.

Lemma 1. If the market has unique level sets represented by L, then it admits an

invariant representation given (WU , P̃), defined by R(a, θ) := {p : θ ∈ L(a, p)}.

Notice that in deriving the representation in Lemma 1, we are using the restrictions

implied by the unique implementation requirement. Such a market need not admit

an invariant representation given (AP ,PΘ).

Define T̄ (a, θ) = {θ′ : R(a, θ′) = R(a, θ)}. The following result is analogous to

Theorem 2 in the uni-dimensional case.

Proposition 3. Assume the market level sets uniquely represented by L, and so

admits an invariant representation in (WU , P̃). Assume moreover that the represen-

tation R is strictly increasing.31 If (Q,P ) is CUI, then

i. P (θ) = R(Q(θ), θ).

31By this we mean strictly increasing in the usual product partial order on RN .
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ii. P is strictly monotone (in the product partial order on Θ).

iii. Q is continuous.

iv. For all θ, Q(θ′) = Q(θ) for all θ′ ∈ T̄ (Q(θ), θ).

v. Q(θ) 6= Q(θ′)⇒ T̄ (Q(θ), θ) ∩ T̄ (Q(θ′), θ′) = ∅.

Proof. In Appendix C.3.

The conditions of Proposition 3 are also sufficient, except we require analogs to

BC1 and BC2 for the multi-dimensional space. We omit the details for brevity. Since

any market that admits an invariant representation in (AP ,PΘ) has unique level sets

represented by some L, Proposition 3 applies to such markets.

3 Properties and extensions

In Appendix D we discuss properties of CUI policies and study optimal policy when

the unique implementation requirement is relaxed. Briefly, these results can be sum-

marized as follows.

Structural uncertainty. In many settings there may be uncertainty regarding the re-

lationship between the principal action, price, and the state. For example, there may

be noise traders in the market who induce variability into the price.32 Additionally,

the principal may have limited data with which to estimate the representation R. It is

therefore desirable to use a decision rule such that outcomes are suitably continuous

with respect to small perturbations of R. We show that in fact any CUI action and

price functions are implementable in a way that is robust to structural uncertainty,

i.e. such that outcomes are suitably continuous in R (Theorem 4). (CWUI outcomes

can be implemented so as to satisfy a weaker notion of robustness).

Beyond uniqueness In some cases, the principal may be willing to tolerate the ex-

istence of multiple equilibria. The restriction to unique implementation would be

especially unappealing if the principal could choose some decision rule which induces

multiple equilibria, but such that all of these equilibria dominate, from the principal’s

32As shown in appendix F.3, an alternative way to deal with such noise is to fold it into the state.
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perspective, the best equilibrium that can be implemented uniquely. We show that

this is never the case. The key insight is that even if a decision rule induces multiple

equilibria, at least one of these will be weakly uniquely implementable (Theorem 5).

Thus for a principal who evaluates a set of possible equilibria according to the worst

case, the restriction to (weak) unique implementation is without loss of optimality

(Corollary 2). In other words, unique (i.e. full) implementation is without loss of opti-

mality in a “robust mechanism design” sense (e.g. Carroll (2015)). We also study the

case where the principal takes a less extreme approach to multiplicity (Proposition 9).

4 Application: bailouts

In this section we consider in greater detail the bailout setting introduced in Sec-

tion 2.4. The same analysis applies to an international lender such as the IMF using

a country’s bond price to inform a bailout decision.33

4.1 Markets without noise

The principal seeks to learn about the company’s degree of distress by observing its

stock price.34 We first study a market in which information aggregates perfectly, and

illustrate qualitative changes in the principal’s policy as a function of the relative

social benefit the principal attaches to strengthening the company. In Section 4.2 we

study the same problem when the market is described by the canonical noisy REE

model of Grossman and Stiglitz (1980), in which there a much wider range of ways

in which information can be aggregated.

Shares are traded in a competitive stock market, as in Section 2.4. We relax for

now the assumption that the ex-post asset value π(a, θ) is linear in the state: we

assume only that θ 7→ π(a, θ) is increasing for all a, and a 7→ ∂
∂θ
π(a, θ) is decreasing

(as discussed in Section 2.4). By Proposition 1, the market admits an invariant rep-

33Similarly, it is argued that state-contingent debt instruments, in which payments are conditioned
on variables such as GDP or commodities prices, should be used to reduce the need for protracted
and costly sovereign debt restructurings (Cohen et al., 2020).

34Versions of this problem have been studied by Bond and Goldstein (2015) and Lee (2019), among
others. The analysis here is also applies to the problem of an international lender using sovereign
debt prices to inform emergency lending decisions.
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resentation R. Moreover, as in Section 2.4, R = π, so θ 7→ R(a, θ) is continuous and

strictly increasing for every a and a 7→ ∂
∂θ
R(a, θ) is decreasing.

As before, the principal wishes to choose the maximal intervention a = 1 if θ ≤ − c
b
,

and make no intervention otherwise. We refer to this as the first-best action function.

We generalize the definitions of a hawkish and dovish principal.

Definition 10. The principal is hawkish if a 7→ π(a, θ) is decreasing in a neighbor-

hood of θ = c
b
, dovish if a 7→ π(a, θ) is increasing in a neighborhood of θ = c

b
.

As discussed, the principal is hawkish (dovish) if the social benefit of intervention

is large (small) relative to the cost. The following result uses an extension of Propo-

sition 2 to environments that are not necessarily fully bridgeable (Proposition 12).35

Proposition 4. If the principal is hawkish, then the first-best action function is

CWUI. In this case, under the optimal decision rule, letting p′ = R(1,−c/b) < p′′ =

R(0,−c/b), the principal chooses full intervention below p′, no intervention above p′′,

and a continuously decreasing level of intervention on (p′, p′′).

Say that π has the pivot property if there exists a state θ∗ such that a 7→ π(a, θ)

is increasing (decreasing) for θ < (>)θ∗ (as is the case in Section 2.4).

Lemma 2. If π has the pivot property then the converse to Proposition 4 holds as

well: the first-best is CWUI if an only if the principal is hawkish.

If the principal is hawkish, the first best action function, which is a step function

that goes from 1 to 0 at θ = − c
b
, is implemented robustly by a decision rule for which

the action decreases gradually as a function of the price over a range of intermediate

prices. In contrast, when the principal is dovish intermediate actions are taken in

equilibrium for some states, and the (virtually) optimal decision rule features sharp

jumps in the action as a function of the price. This is most clearly illustrated under

the assumption that π has the pivot property.

35The market here may not be fully bridgeable, but it is bridgeable in a neighborhood of c
b since

by assumption a 7→ π(a, cb ) is monotone.
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Proposition 5. Assume the principal is dovish and π has the pivot property. Then

there exist states θ′ < − c
b
< θ′′ such that

• The virtually optimal action function Q∗ features full intervention below θ′, no

intervention above θ′′, and a level of intervention that is continuously decreasing

as a function of the state over (θ′, θ′′).

• The virtually optimal decision rule is a continuous approximation of a step func-

tion, which for some p̃ switches from full intervention below p̃ to no intervention

above p̃.

Proof. In Appendix C.5.

Figure 3a illustrates the case of a hawkish principal (under the assumption that

π has the pivot property). The blue lines correspond to the price function induced by

the first-best action function.

−c
b

R(1, ·)

R(0, ·)

p′

p′′

(a) Hawkish principal, first-best is CWUI

θ′′θ′ −c
b

R(1, ·)
R(0, ·)

p̃

(b) Dovish principal, virtually optimal

Figure 3: First best

Figure 3b illustrates the case of a dovish principal. In this case, the monotonicity

constraint on the equilibrium price function (Theorem 1) binds. The blue lines cor-

respond to the price function induced by the action function that is optimal under

this constraint. The fact that θ′ < − c
b
< θ′′ implies that the virtually optimal policy

entails two types of errors, resulting from the desire for robust implementation: too

little intervention for states in (θ′,− c
b
), and too much for states in (− c

b
, θ′′).
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4.2 Bailouts: imperfect information aggregation

Consider now the bailout problem in a framework with aggregate uncertainty. The

market is modeled as in Section 1, example 4. The state θ = (ω, z) consists of the

payoff-relevant state ω ∈ Ω, interpreted as the strength of the company, and the

shock to aggregate supply z ∈ Z.36 Agents’ signals are equal to ω plus a normally

distributed noise term with variance σ2
i . Agent i has CARA utility with risk-aversion

coefficient τi. The supply shock has a truncated-normal distribution on (z, z̄), where

z = −z̄ (we allow z̄ =∞). Additionally, we make the simplifying assumption that ω

is uniformly distributed. The cash flow (the ex-post value of the asset) is assumed to

be linear, given by π(a, ω) = β0(a) + β1(a)ω. Assume that β1(a) is strictly positive,

strictly decreasing, weakly convex, and twice differentiable.

We normalize the social benefit of intervention to 1, so the principal’s ex-post

payoff is u(a, θ) := (1 − a)ω − ac. The first-best action function is to make the

maximal intervention if ω ≤ −c, and make zero intervention otherwise.

The invariant representation for this market is discussed in detail in Appendix F.3.

In brief, we show that any CWUI price function P must belong to the set P̃ with

the “no intersecting level sets” property. In particular, for any p ∈ P (Θ) there exists

` ∈ R and a ∈ A such that {(ω, z) : P (ω, z) = p} = {(ω, z) : L∗(ω, z|a) = `}, where

L∗(ω, z|a) :=
κ

β1(a)
ω − z = ` (1)

and κ :=
∫
i
τi
σ2
i
di.37 Given that P ∈ P̃ is a necessary condition for CWUI, it suffices

to show that the market admits an invariant representation in (W∗, P̃).

Lemma 3. The above market admits an a.e. invariant representation given (W∗, P̃).

36We denote the strength of the company as ω, rather than θ as in Section 4.1, to maintain
consistency with the rest of the paper: θ must contain all variables which determine the price.

37Note that the higher is β1, i.e. the more responsive is the cash flow to ω, the less informative is
the price about ω. This is because when β1 is high, investors’ private signals of ω are less informative
about the cash flow π. As a result, investors put less weight on their private signals relative to the
public information contained in the price, and so the price is less informative. Since β1 is decreasing
in the level of intervention, this implies that higher levels of intervention make the price more
informative about the payoff-relevant state. Bond and Goldstein (2015) also study how market-
based interventions affect the efficiency of information aggregation by prices.
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Moreover, (ω, z) 7→ R(a, ω, z) is strictly increasing for all a.

Proof. In Appendix F.3.

4.3 Reformulating the problem

To characterize optimal policy in this setting, we use Proposition 3 to reduce the

problem of choosing Q : Ω × Z → [0, 1] to the simpler one-dimensional problem of

choosing the marginal action function ω 7→ Q(ω, z̄).38 For this purpose, it is convenient

to define action functions on R×Z, rather than just Ω×Z.39

By Proposition 3, if Q is a CUI action function and Q(ω, z̄) = a, then the state

(ω, z̄) belongs to a level set of the equilibrium price function which is defined by

{(ω′, x′) : R(a, ω′, z′) = R(a, ω, z̄)}. Since the principal’s action must be measurable

with respect to the price, this implies that Q(ω′, z′) = Q(ω, z) for all (ω′, z′) in

this level set. Let w(a, z, x) : A × Z × R → R be the unique ω ∈ R such that

R(a, w(a, z, x), z) = R(a, x, z̄).40 From eq. (1), w(a, z, x) := x− 1
κ
β1(a) (z̄ − z) .

Thus, any CUI Q : R × Z → [0, 1] is uniquely identified among the set of CUI

action functions by its marginal ω 7→ Q(ω, z̄) (to visualize this approach, see Figure 4).

Conversely, Proposition 3 implies that α : R→ [0, 1] is the marginal of a CUI Q if and

only if it satisfies the following properties: i) α is continuous, ii) x 7→ R(α(x), x, z) is

monotone, and iii) x 7→ w(α(x), z, x) is strictly increasing. Condition (iii) says that

the linear statistics for the price function do not intersect. Thus we optimize over

α : R→ [0, 1] that satisfy conditions (i)-(iii).

4.4 Characterization of optimal policy

Recall that in the model with supply shocks, we said that the principal was hawkish

if a 7→ π(a, ω) was decreasing for all ω ≥ −c, where ω = −c is the highest state at

which the principal wants to intervene. In the current model, we introduce a slightly

different notion of hawkish, which accounts for the imperfection in the aggregation

38For simplicity we focus on CUI; the analysis for CWUI is nearly identical. In fact, the optimal
CUI and CWUI policies coincide.

39We still consider Ω×Z to be the state space, for the purposes of defining CUI.
40It is convenient to define w for x that are not in Ω.
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of information by the price. Here we say that the principal is hawkish if a 7→ π(a, ω)

is decreasing for all ω ≥ − 1
κ
z̄β1(1) − c. The additional term − 1

κ
z̄β1(1) reflects the

fact that information aggregation is necessarily imperfect, and so the principal may

choose less than full intervention for some ω below −c.

The characterization of optimal policy is most easily stated under the following

assumption, which says that the range of fundamental uncertainty, i.e. [ω, ω̄], is large

relative to the range of supply shocks [z, z̄] and the marginal cost of intervention c.

This implies that a = 0 is optimal for low ω and a = 1 for high ω.41

Assumption 1. ω̄ ≥ 1
κ
z̄ (β1(0)− β′1(0))− c and ω ≤ 1

κ
z̄β1(1)− c.42

In Section 4, where information was perfectly aggregated by the price, the first-

best action function was CUI when the principal was hawkish. This is not the case

with aggregate uncertainty.

Theorem 3. When the principal is hawkish, the optimal CUI action function Q∗ is

characterized by α∗(ω) := Q∗(ω, z̄) given by

• α∗(ω) = 1 for ω ≤ ω∗ := 1
κ
z̄β1(1)− c

• α∗(ω) = 0 for ω ≥ ω∗∗ := 1
κ
z̄ (β1(0)− β′1(0))− c

• α∗ is continuous and strictly decreasing on (ω∗, ω∗∗), defined as the unique

solution to 1
κ
z̄
(
β1(a)− (1− a)β′1(a)

)
− c = ω.

Thus Q∗ features maximal intervention for low-ω/high-z states and no intervention

for high-ω/low-z states. Moreover, intermediate actions are taken with positive prob-

ability if and only if a 7→ β1(a) is non-constant.

Proof. In Appendix C.6.

The level sets of the equilibrium price function are depicted in Figure 4. Northwest

of the blue dotted line full intervention occurs. Southeast of the solid red line there

is no intervention. In between, Q∗ is a continuous function that takes intermediate

values. The equilibrium price is increasing in the southeast direction.

41This assumption is made purely for the purpose of exposition; it simplifies the proof of Theo-
rem 3. Dropping this assumption does not change the qualitative results.

42Since β1(a) is decreasing, β1(0)− β′1(0) ≥ β1(1), so the conditions are not redundant.
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z̄

z
ω ω̄

Figure 4: Level sets of optimal action function.

The first-best cannot be implemented when ω is not perfectly revealed. Aside from

providing an analytical characterization of the optimal policy, the interesting feature

of Theorem 3 is that intermediate actions play a significant role. Recall that this is

not the case for a hawkish principal when the price is fully revealing, as in Section 4.1.

Intermediate actions are optimal here—even though the principal’s ex-post payoff is

linear—because the principal recognizes the impact their action has on the degree to

which information is aggregated by the price. This effect operates via changes in the

slope of the linear statistic in eq. (1). For higher states, the principal balances the

desire to reduce the level of intervention against the reduction in the informativeness

of the price. Only when a 7→ β1(a) is constant does the principal take only extreme

actions in equilibrium. The following can be observed from Theorem 3 and eq. (1).

Corollary 1. Under the optimal policy

i. The set of states for which intermediate actions are taken is increasing (in the

set inclusion order) in β1(0)− β′1(0), and decreasing in β1(1).

ii. The probability of taking an intermediate action decreases if private signals

become more precise, i.e. σi decreases for almost all i.
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Appendix

A Axiomatic approach to invariant representation

In this section, we characterize markets that admit an invariant representation in

terms of primitive properties.

Definition 11. Let P̂ ⊂ PΘ. The market is competitively identified in (W , P̂) if

1. For any M,M ′ ∈ W , any equilibrium price functions P given M and P ′ given

M ′, and any state θ ∈ Θ, M(P (θ)) = M ′(P ′(θ)) ⇒ P (θ) = P ′(θ).

2. Let {Ma}a∈K be a family of constant decision rules and {Pa}a∈K a family of

respective equilibrium price functions, where K ⊂ A. Let {Ia}a∈K be a partition

of Θ such that Pa(Ia)∩Pa′(Ia′) = ∅ for all a, a′ ∈ K s.t. a 6= a′.43 Let P : Θ→ P

be defined by P := Pa on Ia, for each a ∈ K. Then P ∈ P̂ implies that P is an

equilibrium price function for some M ∈ W .

Both conditions in Definition 11 represent a sense in which equilibrium outcomes

are separable across states, which is true in general only if agents are price takers.

The first condition says that the equilibrium principal action in state θ uniquely iden-

tifies the equilibrium price in state θ, across all M ∈ W and all associated equilibria.

The second part of Definition 11 says that we can generate new equilibria by stitch-

ing together equilibrium price functions, provided the resulting function is in some

predetermined set P̂ .

Proposition 6. A market is competitively identified in (W , P̂) iff it admits an in-

variant representation given (W , P̂).

Proof. In Appendix C.4

Proposition 6 and Part 1 in Definition 1 tells us that P (θ) = R(M◦P (θ), θ) for all θ

is a necessary condition for P to be an equilibrium price function. This is immediately

implied by part 1 in Definition 11. Part 2 of Definition 1, which is implied by condition

43For a function f : X 7→ Y we use the notation f(I) := {f(x) : x ∈ I} for I ⊂ X.
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2 in Definition 11, says the converse. In some settings, before identifying an invariant

representation, the requirements of robustness (to manipulation and multiplicity)

imply restrictions on the set of possible equilibrium price functions. Thus for the

purposes of identifying the invariant representation, we can restrict attention to a set

of price functions P̂ ( P . Condition 2 in the definition of competitively identified

may not hold for all P ∈ P , but it is enough to know that it holds on P̂ . The utility

of this approach is illustrated in Appendix F.3.

A.1 Importance of price taking

Since agents in competitive markets behave as price takers, they do not internalize

the effect that their actions have on the principal’s action. This is the key property

that allows for an invariant representation of the market. Markets in which agents

are not price takers generally fail to admit an invariant representation.

Example 1. Consider the standard auction environment. The market participants

are the bidders and the seller. An equilibrium consists of a mechanism for the seller

and strategies for the bidders, specifying their bids as a function of their type. This

environment is a market, where we let the price be that paid by the winning bidder.

The principal could be a regulator who commits to taking some action as a function

of the price. This action may affect the value of the object.

IfW contains non-constant decision rules, it is easy to construct examples showing

that the market does not admit an a.e. invariant representation. This is because

bidders internalize the effect that their actions have on the price (winning bid) and

thus respond to global properties of the principal’s decision rule, which implies a

violation of Definition 11, part 1.

B Appendix: Proofs of the main results

We begin with some preliminary results. Use θM(p) to indicate the states that are

consistent with a price p, given a policy function M , i.e., the states for which there

exists a P implementing θM := {θ ∈ Θ : M implements P and P (θ) = p}.
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Observe that for markets that admit a invariant representation, θM(p) := {θ ∈

Θ : R(M(p), θ) = p}

Lemma 4. If R is weakly increasing in θ then θM(p) is convex valued.

Proof. θM(p) = {θ ∈ Θ : R(M(p), θ) = p}. If R(M(p), ·) is monotone, R(M(p), θ′) =

R(M(p), θ′′) = p implies R(M(p), θ) = p for all θ ∈ (θ′, θ′′).

Lemma 5. For any M , each p such that θM(p) = ∅ is of one and only one of the

following two types:

• Type L: R(M(p), θ′) > p ∀θ′ ∈ Θ .

• Type H: R(M(p), θ′) < p. ∀θ′ ∈ Θ.

Proof. If p is of neither type, there exists a pair of states θ′, θ′′ such that R(M(p), θ′)−

p > 0 > R(M(p), θ′′) − p. Then by continuity, there is a state θ ∈ (θ′, θ′′) such that

R(M(p), θ)− p = 0. But then θ(p) is not empty.

Lemma 6. (Generalized intermediate value theorem). Let F : [0, 1] → [0, 1] be a

non-empty, compact, and convex valued, upper hemicontinuous correspondence. Let

p1 < p2. Let y1 ∈ F (p1) and y2 ∈ F (p2). Then for any ỹ ∈ (min{y1, y2},max{y1, y2})

there exists p ∈ [p1, p2] such that ỹ ∈ F (p).

Proof. Assume that y2 > y1 (the case with y2 = y1 is trivial and y2 < y1 is symmetric).

We prove by contrapositive: assume that there exists a ỹ ∈ (y1, y2) such that ỹ /∈ F (p)

for all p ∈ [p1, p2]. Since F (p) is convex, for every p either maxF (p) < ỹ or minF (p) >

ỹ. Let p∗ = sup{p ∈ [p1, p2) : maxF (p) < ỹ}.

Suppose that maxF (p∗) < ỹ. Notice that this is only compatible with p∗ < p2.

Consider the open set V := (minF (p∗) − ε,maxF (p∗) + ε) with ε < ỹ −maxF (p∗).

By upper hemicontinuity, there exists a neighborhood of p∗ such that F (p) ⊂ V for

all p in such neighborhood. Thus, in a neighbourhood of p∗, F (p) < ỹ, which violates

the definition of p∗.

Suppose that minF (p∗) > ỹ. Notice that this is only compatible with p∗ > p1.

Using upper hemicontinuity as before, we get that there is a neighbor of p∗ such that

F (p) > ỹ for all p in that neighborhood, what violates the definition of p∗.
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Lemma 7. For any M , p 7→ θM(p) is compact-valued. If M is continuous at p′ and

θM(p′) is not empty for every p in a neighborhood of p′ then p 7→ θM(p) is upper

hemicontinuous at p′.

Proof. Compact valuedness is easy: if R(M(p), θ) − p 6= 0 then by continuity of R

this holds for all θ′ in a neighborhood of θ. Now upper hemicontinuity. Let Θ̄ be the

closure of Θ, and let θ̄M(p) := {θ ∈ Θ̄ : R(M(p), θ) = p} (where for θ ∈ Θ̄ \ Θ we

define R(a, θ) as the limit as θ′ → θ for θ′ ∈ Θ). Let V be an open set containing

θ̄M(p). Since θ̄M(p) is compact Then Θ\V is compact, so there exists κ > 0 such that

|R(M(p), θ) − p| > κ for all θ ∈ Θ̄ \ V . Then by continuity of R,M there exists an

open neighborhood U of p such that |R(M(p′), θ)− p′| ≥ κ for all p′ ∈ U, θ ∈ Θ̄ \ V .

Thus θM(p′) ⊆ V . Thus p 7→ θ̄M(p) is upper hemicontinuous at p′.

Now since θM(p′) is non empty, if θ̄ ∈ θ̄M(p′) then there is some θ1 < θ̄ such that

[θ1, θ̄) ⊂ θM(p′). Similarly if θ ∈ θ̄M(p′). Then any open set containing θM(p′) also

contains θ̄M(p′). Thus θM is upper hemicontinuous at p′ as well.

B.1 Proof of Theorem 1

Let (P,Q) be CWUI and M ∈ W∗ a policy that implements (P,Q). Let PM(θ) :=

{p ∈ R : R(M(p), θ) = p}. For any θ ∈ Θ, Let aθ := sup{p ≤ P (θ) : θM(p) = ∅} and

bθ := inf{p ≥ P (θ) : θM(p) = ∅}.

Lemma 8. For any θ∗, if aθ∗ = bθ∗ = P (θ∗) then either R(M(P (θ∗)), θ) = P (θ∗) for

all θ ≤ θ∗, or R(M(P (θ∗)), θ) = P (θ∗) for all θ ≥ θ∗ (or both).

Proof. Since M is essentially continuous, it is continuous in a neighborhood of P (θ∗).

Let (p, p̄) be such a neighborhood.

Claim 1. Either (1.1) For every p ∈ (P (θ∗), p̄) there exists p ∈ (P (θ∗), p) such

that R(M(p′), θ) > p′ for all θ ∈ Θ, and/or (1.2) For every p ∈ (P (θ∗), p̄) there exists

p′ ∈ (P (θ∗), p) such that R(M(p′), θ) < p′ for all θ ∈ Θ. Similarly, either (1.3) For

every p ∈ (p, P (θ∗)) there exists p′ ∈ (p, P (θ∗)) such that R(M(p′), θ) > p′ for all

θ ∈ Θ, and/or (1.4) For every p ∈ (p, P (θ∗)) there exists p′ ∈ (p, P (θ∗)) such that

R(M(p′), θ) < p′ for all θ ∈ Θ.
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Claims (1.1)-(1.4) follow from Lemma 5 and the assumption that aθ∗ := sup{p ≤

P (θ) : θM(p) = ∅} = P (θ∗) = bθ∗ := inf{p ≥ P (θ) : θM(p) = ∅}.

Claim 2. R(M(P (θ∗)), θ) = P (θ∗) for all θ ≤ θ∗ if either (1.1) or (1.3) hold.

R(M(P (θ∗)), θ) = P (θ∗) for all θ ≥ θ∗ if either (1.2) or (1.4) hold.

Suppose (1.1) holds. Then we can find a sequence {pn} with pn < P (θ∗) and pn →

P (θ∗) such that R(M(pn), θ) > pn for all θ. By continuity, R(M(P (θ∗)), θ) ≥ P (θ∗),

and since θ 7→ R(M(P (θ∗)), θ) is non-decreasing, we have R(M(P (θ∗)), θ) = P (θ∗)

for all θ ≤ θ∗.

By a symmetric argument, if (1.3) holds, then R(M(P (θ∗)), θ) ≥ P (θ∗), and

since θ 7→ R(M(P (θ∗)), θ) is non-decreasing and R(M(P (θ∗)), θ∗) = P (θ∗), we have

R(M(P (θ∗)), θ) = P (θ∗) for all θ ≤ θ∗. A symmetric argument applies to (1.2) and

(1.4). Combined, Claims 1 and 2 complete the proof.

Lemma 9. For any θ∗, if aθ∗ < bθ∗ then PM(θ) ∩ (aθ∗ , bθ∗) 6= ∅ for all θ ∈ Θ.

Proof. Note that, by definition of aθ and bθ∗ , (aθ∗ , bθ∗) ⊆ PM(Θ). By definition

of essential continuity, M is continuous in (aθ∗ , bθ∗). First, we prove that either

(i) R(M(aθ∗), θ) = aθ∗ and R(M(bθ∗), θ̄) = bθ∗ or (ii) R(M(aθ∗), θ̄) = aθ∗ and

R(M(bθ∗), θ) = bθ∗ .

Consider a sequence of prices pn such that pn ∈ (aθ∗ , bθ∗) and pn converges to

aθ∗ . For every n , since pn ∈ (aθ∗ , bθ∗) ⊂ PM(Θ), there exists θn ∈ Θ such that

R(M(pn), θn) = pn. Thus, for each n, R(M(pn), θ) − pn ≤ R(M(pn), θn) − pn = 0

where the first inequality holds by monotonicity of R.

Since M is continuous on a neighbourhood of aθ∗ , taking limits side-by-side, we

get that R(M(aθ∗), θ) ≤ aθ∗ . Likewise, we can prove that aθ∗ ≤ R( ¯M(aθ∗), θ).

It remains to show that aθ∗ is not in the interior. Suppose by contradiction that

it is. Then 0 ∈ (R(M(aθ∗), θ)− aθ∗ , R(M(aθ∗), θ̄)− aθ∗)). For an ε > 0 small enough,

for every p ∈ (aθ∗ − ε, aθ∗), 0 ∈ (R(M(p), θ)− p,R(M(p), θ̄)− p)). Thus, applying the

intermediate value theorem, (aθ∗−ε, aθ∗ ] ⊂ PM(Θ), what violates the definition of aθ∗ .

The same argument can be applied to prove that bθ∗ ∈ {R(M(bθ∗), θ), R(M(bθ∗), θ̄)}.
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Next we show that it cannot be the case thatR(M(aθ∗), θ) = aθ∗ andR(M(bθ∗), θ) =

bθ∗ . If that is the case, since continuity of M in (aθ∗ , bθ∗) implies that θM(p) is

upper hemicontinuous in (aθ∗ , bθ∗), PM(θ̃) is not a singleton for a small δ > 0,

θ̃ ∈ [θ, θ + δ). A symmetric argument rules out the case in which R(M(aθ∗), θ̄) = aθ∗

and R(M(bθ∗), θ̄) = bθ∗ .

We finish the proof by showing that PM(θ′)∩ (aθ∗ , bθ∗) 6= ∅ for all θ′ ∈ Θ. Suppose

case (i) holds, i.e. that θ ∈ θM(aθ∗) and θ̄ ∈ θM(bθ∗). By the intermediate value

theorem in Lemma 6, for every θ′ ∈ (θ, θ̄) there exists a p ∈ (aθ∗ , bθ∗) such that

θ ∈ θM(p). Thus, p ∈ PM(θ′) ∩ (aθ∗ , bθ∗). If case (ii) holds, a symmetric argument

proves the claim.

Proof of Theorem 1. Suppose, towards a contradiction, that (Q,P ) is implemented by

M ∈ W∗ and P is not monotone. Assume in particular that there is θ1 < θ2 < θ3 such

that P (θ1) > P (θ3) > P (θ2). (The other cases of non-monotonicity are symmetric.)

Claim 1. Either (1.1) aθ1 = aθ2 = aθ3 and bθ1 = bθ2 = bθ3 , or (1.2) aθ1 = bθ1 ,

aθ2 = bθ2 , and aθ3 = bθ3 .

To shop Claim 1, either there exists i ∈ {1, 2, 3} such that aθi < bθi , or not.

Suppose such an i does exist and there exists j 6= i such that aθi 6= aθj (which also

implies bθi 6= bθj). Then by Lemma 9, for any θ ∈ Θ we have PM(θ) ∩ (aθi , bθi) 6= ∅.

If aθj < bθj then by Lemma 9 for any θ ∈ Θ we have PM(θ) ∩ (aθj , bθj) 6= ∅, so there

is multiplicity in all states. If aθj = bθj then by Lemma 8 either there is multiplicity

above θj or below θj.

Claim 2. If (1.1) holds, then we have a contradiction.

M is continuous in (P (θ1), P (θ2)). Thus we can apply Lemma 6: for every θ ∈

(θ1, θ3) there exists a price pθ ∈ (P (θ3), P (θ1)) such that pθ ∈ PM(θ). Likewise, for

every θ ∈ (θ2, θ3) there exists a price in p′θ ∈ (P (θ2), P (θ3)) such that p′θ ∈ PM(θ).

Thus, for all states in θ ∈ (θ2, θ3), p′θ 6= pθ and therefore the set PM(θ) has more than

one element, what implies a violation of robustness to multiplicity.

Claim 3. If (1.2) holds, then we have a contradiction.
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In this case, Lemma 8 implies that for each i ∈ {1, 2, 3}, either P (θi) ∈ PM(θ)

for all θ ≤ θi, or for all θ ≥ θi. Any combination of these conditions for i ∈ {1, 2, 3}

implies multiplicity on a positive measure set.

B.2 Proof of Theorem 2

Lemma 10. Assume R is weakly increasing in θ. For any M ∈ M that is robust to

multiplicity, Let p1 < p2 such that there are states θ and θ̄ with θ < θ < θ̄ for each

θ ∈ θ(p1) ∪ θ(p2). Then [p1, p2] ∈ P (Θ).

Proof. By Theorem 1, the price function P is monotone, so without loss of generality

assume that it is increasing, and let p1, p2 ∈ P (Θ) with p2 > p1. Assume towards a

contradiction that there exists p ∈ (p1, p2) such that p /∈ P (Θ). By Lemma 5 p is

either type H or type L. Suppose it is type L, i.e. R(M(p), θ)− p > 0 for all θ. Since

θM(p1) 6= ∅, it must be that R(M(p1), θ) − p1 ≤ 0. Moreover, since θ 6∈ θM(p1) by

assumption, the inequality is strict: R(M(p1), θ) − p1 < 0. Then by continuity there

exists p′ ∈ (p1, p) such that R(M(p′), θ) − p′ = 0. Let θ1 = min θM(p1), which exists

by Lemma 7 (by assumption θ1 > θ). Since P is increasing, p′ > p1 > P (θ) for all

θ ∈ [θ, θ1). Then by Lemma 6 there is multiplicity for all states in θ ∈ [θ, θ1), which

is a contradiction. If p is type H then the proof is symmetric, using p2 for p1.

Proof. (⇒) Part 1 follows trivially from the market clearing condition necessary for

implementation (see Observation 1).

Theorem 1 states that P must be weakly monotone. To prove strict monotonicity

(part 2) consider P (θ) = P (θ′). Then, R(Q(θ), θ) = R(Q(θ′), θ′). By measurability,

Q(θ) = Q(θ′), so R(Q(θ), θ) = R(Q(θ), θ′) which, since R is strictly increasing in θ

implies that θ = θ′. Thus, P is strictly monotone.

Now we prove that Q is continuous for any interior state. Since R(a, θ) is strictly

monotone in θ, we have |θM(p)| ≤ 1 for all p. To see this, consider θ, θ′ ∈ θM(p). This

means that R(M(p), θ) = p = R(M(p), θ′) which, by strict monotonicity of R, means

that θ = θ′.

For some interior state θ′, let p− := limθ↘θ′ P (θ) and p+ := limθ↗θ′ P (θ). Since M

is essentially continuous, M is continuous in an open neighborhood N of P (θ′). This,
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together with continuity of R, implies that θM(p) is continuous on N . Thus, there is

a neighborhood of θ′ such that P (θ) ∩N is not empty for all θ in the neighborhood.

Therefore, p− and p+ must be equal to P (θ) or multiplicity would be violated.

Given that P is continuous for interior states, a discontinuity of Q in an interior

state will necessarily imply a discontinuity of M for a price in P̄ , which would violate

essential continuity. Thus, Q must be continuous for all interior states.

P is monotone and bounded (below by mina∈AR(a, θ) and above by maxa∈AR(a, θ̄)),

so P := limθ↘θ P (θ) and P̄ := limθ↗θ̄ P (θ) exist. Let M be the policy function

that continuously uniquely implements (Q,P ). By essential continuity, M is con-

tinuous at P , so limp↘P M(p) = M(P ). But then, since Q(θ) = M(P (θ)) for all

θ, limθ↘θQ(θ) = limθ↘θQ(θ) = Q(M(P )). The same arguments hold for the other

extreme state θ̄.

Finally, for the case in which P is strictly decreasing, we need to show that Q is

not maximal at the bottom, and Q̄ is not minimal at the top. Since P is decreasing, for

prices right above P , θM(p) should be empty. Q̄ is maximal at the bottom so R(·, θ)

has a local maximum at Q. This means that there is a neighborhood around Q such

that R(q′, θ) < p for all q′ in the neighborhood. By essential continuity, for prices

slightly above p the action is in such neighborhood. So for any ε > 0 there exists a

p′ ∈ (p, p+ ε) such that R(M(p′), θ) ≤ p. Since θ 7→ R(a, θ) is strictly increasing and

R is continuous, for ε small enough we will also have R(M(p′), θ̄) > p′. But then by

continuity of R there exists θ such that R(M(p′), θ) = p′, so θM(p′) is not empty. A

symmetric argument rules out Q being minimal at the top.

(⇐) M can be easily defined on P (Θ) as follows. Since P is injective, define M

on P (Θ) as M(p) = Q(P−1(p)). Notice that M is continuous (by 1 and 3).

The challenge is to define the function M for prices outside P (Θ). The construc-

tions differs for increasing and decreasing P . If P is increasing then define M(p) = Q̄

for all prices above P̄ and M(p) = Q for all prices below P . We want to check that

for all these prices θM(p) = ∅. For prices above P̄ , p ≥ P̄ = R(Q̄, θ̄) = R(M(P̄ ), θ̄) >
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R(M(p), θ) where the last inequality holds for all θ ∈ Θ. A symmetric argument

proves that p < R(M(p), θ) for prices below P . Thus, (Q,P ) is CUI.44

Now for decreasing P , we need to show that there exists a continuous decision

rule for prices right above P so that θM(p) is empty. Let R(a) = R(a, θ) and consider

a finite partition {Ai}ki=1 of A such that the sets {Ai ∩ R−1(P )}ki=1 are connected.

Moreover, by continuity, we can pick the partition {Ai}ki=1 such that the distance

between two of the subsets is greater than zero: For A,A′ two elements of the partition,

if the distance between A∩R−1(P ) and A′ ∩R−1(P ) is zero, then there is a sequence

of actions {ai}∞i=1 such that ai ∈ A ∩ R−1(P ) and a = limi→∞ ai ∈ A′ ∩ R−1(P ).

By continuity, the sets are connected. Thus, in a neighbourhood of Q, R−1(P ) is

connected. By continuity, this splits the neighbourhood of Q in sets for which R(a) >

P and sets for which R(a) < P . Since Q is not a local maximum, there exists at least

one set for which R(a) > P that is at a distance 0 of Q.

Pick a continuous path â : [0, 1] → A such that â(0) = Q and â(t) ∈ A− for all

t > 0. There exists an increasing function h : [0, 1] → P such that h(t) < R(â(t)).

Thus, we can make M(P + tε) = h(t). Then for all P̃ ∈ (P , P + ε), R(M(P̃ ), θ) >

Q(M(P̃ ), θ) > P̃ .

Use a symmetric construction for M below P̄ . Beyond these prices, at the neigh-

borhood of P (Θ), essential continuity is not binding, so any actions that do not

generate equilibria work for the construction. By 1, if for a price all actions generate

an equilibrium, then that price must be in P (Θ).

C Other omitted proofs
C.1 Proof of Proposition 1

1. Private values: Take two action functions M,M ′ and respective equilibrium

price functions P, P ′. Suppose that at θ, M(P (θ)) = M ′(P ′(θ)). The optimal

demand schedule for agent i is x∗(p|si) := xi(si, p,M(p)). If P (θ) > (<)P ′(θ)

then for all i, xi(P (θ)) < (>)xi(P
′(θ)). But then markets cannot clear in state

44Moreover, any (Q,P ) that is CUI and such that P is increasing, can be implemented by an M
that is continuous.
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θ for both P and P ′.

2. Labor market: This is immediate, let R(a, θ) =
∫
i
ui(a, θ).

3. Common values, imperfect information: This follows from Proposition 14.

4. Noisy REE: See Corollary 4.

C.2 Proof of Proposition 2

Proof. Necessity for condition 1 is immediate, and condition 2 follows from Theorem 1.

The argument for condition 4 is the same as in Theorem 2.

It remains to show that Q can have a discontinuity at θ∗ iff P has a discon-

tinuity at θ∗. To see this, notice that Q can be discontinuous at θ∗ iff P is con-

tinuous at θ∗ (otherwise M would need to be discontinuous at P (θ∗)). As shown

in the proof of Theorem 1, P can be discontinuous at θ∗ only if θM(p) = {θ∗} on

(min{limθ↗θ∗ P (θ), limθ↘θ∗ P (θ)},max{limθ↗θ∗ P (θ), limθ↘θ∗ P (θ)}) (otherwise there

is multiplicity for all states in a neighborhood of θ∗). Such a P can be implemented by

an essentially continuous M iff there exists γ satisfying the definition of bridgeability

(in which case we take M = γ on this interval). Once M is defined over these intervals

corresponding to the discontinuities in P , the argument for sufficiency of conditions

(1)-(4) is the same as in Theorem 2.

C.3 Proof of Proposition 3

Proof. Note that T̄ (a, θ) = L(a,R(a, θ)). Then, as outlined in the discussion preced-

ing Proposition 3, conditions iv and v are necessary given the definition of L, since

otherwise there would be multiplicity. i is obviously necessary. To show necessity of

ii and ii, restrict attention to a one-dimensional strictly ordered chain in Θ (e.g. the

diagonal). For the restriction of Q to this chain, necessity of monotonicity and con-

tinuity for interior states follow from the same arguments as in the uni-dimensional

case. The key step is that under iii and iv, this implies that ii holds; if there is a non-

monotonicity on some chain then there will be a non-monotonicity on every chain.

Similarily, Q must be continuous on the interior.
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C.4 Proof of Proposition 6

The “if” is immediate. For the “only if”, note that there is at most one equilibrium for

any constant policy function Ma: take two equilibrium price functions P and P ′ given

Ma, since Ma(P (θ)) = Ma(P
′(θ)) = a, by Part 1 of the definition of a competitively

identified, P (θ) = P ′(θ). Let R(a, θ) be the equilibrium price function given Ma.

1. Let P be an equilibrium price function given M . Fix θ, Let a = M(P (θ)). Then

consider Ma and respective equilibrium price function R(a, θ). By part 1, since

M(P (θ)) = a = Ma(R(a, θ)) it must be that P (θ) = R(a, θ).

2. Let Ia = {θ : M ◦P (θ) = a}. Then P (Ia)∩P (Ia′) = ∅ for all a, a′ ∈M ◦P (Θ).

(If p ∈ P (Ia) ∩ P (Ia′), the definition of Ia says that M(p) = a′ 6= a = M(p)).

The families {Ma}a∈M◦P (Θ) and {Pa}a∈M◦P (Θ), where Pa = R(a, ·), satisfy the

conditions in part 2 of the definition of competitively identified.

C.5 Proof of Proposition 5

Proof. Since π has the pivot property, the environment is fully bridgeable. Since the

principal is dovish, the price-monotonicity constraint from Proposition 2 binds. For

any θ′ < −c
b

the principal can choose M to generate a payoff arbitrarily close to

∫ θ′

θ

u(ā, θ)dH(θ) +

∫ t(θ′)

θ′
u(α(θ, θ′), θ)dH(θ) +

∫ θ̄

t(θ′)

u(0, θ)dH(θ), (2)

where α(θ, θ′) is defined by R(α(θ, θ′), θ) = R(ā, θ′), and t(θ′) by R(0, t(θ′) = R(ā, θ′).

Here α(θ, θ′) is continuous and decreasing in its first argument and increasing in the

second, and t(θ′) is decreasing. The principal chooses θ′ to maximize eq. (2). We want

to show under the optimal policy θ′ < −c
b
< t(θ′). To see this, suppose θ′ = −c

b
. There

is a first-order gain from lowering θ′ by a small ε, since this means that a lower action

is take on the entire interval (−c
b
, t(−c

b
)). The loss from a lower action on (−c

b
− ε, −c

b
)

is second order. An analogous argument applies to raising θ′ when t(θ′) = −c
b

.
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C.6 Proof of Theorem 3

Proof. Let C+ be the set of continuous and decreasing functions from R to [0, 1]. Then

the principal’s program can be written as follows.

max
α∈C+

∫ ∞
−∞

∫ z̄

z

u
(
α(x), w(z, α(x), x)

)
fω(w(z, α(x), x))fz(z) dz dx (3)

s.t. x 7→ R(α(x), x, z̄) increasing and x 7→ w(α(x), z, x) increasing.

We solve this program ignoring the constraints that x 7→ R(α(x), x, z̄ and x 7→

w(α(x), z, x) are increasing, and then verify that they are satisfied.

Let ω∗∗ := 1
κ
z̄ (β1(0)− β′1(0)) − c, and ω∗ := 1

κ
z̄β1(1) − c. First, consider x ∈

(ω∗, ω∗∗). Using the assumption that ω is uniformly distributed, the derivative of the

objective at x with respect to a is proportional to

∫ z̄

z

[
u1

(
a, w(a, z, x)

)
+ u2(a, w(a, z, x))w1(a, z, x)

]
fz(z)dz

=

∫ z̄

z

[
−
(
x+ c− 1

κ
β1(a)(z̄ − z)

)
− (1− a)

1

κ
β′1(a) (z̄ − z)

]
fz(z)dz

=
1

κ
z̄ (β1(a)− (1− a)β′1(a))− (x+ c) (4)

Under the maintained assumption that β1 is convex, a 7→ β1(a)− (1−a)β′1(a) strictly

positive and strictly decreasing; and the expression in eq. (4) is strictly decreasing

in a. Thus setting eq. (4) equal to 0 defines a decreasing and continuous (in fact,

differentiable) α∗ : Ω 7→ [0, 1].

For x ∈ R such that either x > ω̄ or w(0, z, x) < ω the derivative with respect

to a does not take the form in eq. (4). Consider x > ω̄. For any a ∈ [0, 1] and a

policy α such that α(x) = a, the posterior over R induced by the public information

{(x′, z) : L(x′, z|a) = L(x, z̄|a)} first-order stochastically dominates that induced

by {(x′, z) : L(x′, z|0) = L(ω∗∗, z̄|0)}. Since no intervention is optimal at ω∗∗, no

intervention remains optimal at x > ω∗∗. Full intervention is optimal for x < ω∗.
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We now argue that α∗ also satisfies the constraints in the principal’s program, and

so constitutes an optimal policy. First, we show that x 7→ w(α∗(x), z, x) is increasing.

d

dx
w(α∗(x), z, x) = 1− 1

κ
β′1(α∗(x))(z̄ − z)α′∗(x)

Implicit differentiation of the condition in eq. (4) over the range of x for which α∗ is

non-constant yields α′∗(x) =
(
z̄ 1
κ

(2β′1(α∗(x))− (1− α∗(x))β′′1 (α∗(x)))
)−1

. Substitut-

ing this into the previous expression and using the fact that z = −z̄ yields

d

dx
w(α∗(x), z, x) = 1− 2β′1(α∗(x))

(2β′1(α∗(x))− (1− α∗(x))β′′1 (α∗(x)))

Since β′1 < 0 and β′′1 ≥ 0, we have d
dx
w(α∗(x), z, x) ≥ 0 as desired.

We now show that ω 7→ R(α∗(ω), ω, z) is increasing. From eq. (4) we have α∗(ω) =

1 for all ω ≤ 1
κ
z̄β1(z) − c. Under the assumption that the principal is hawkish,

a 7→ π(a, ω) is decreasing for all ω > −w(1, z, 1
κ
z̄β1(z)− c) = − 1

κ
z̄β1(z)− c. Since α∗

is decreasing above 1
κ
z̄β1(z)−c, this implies that ω 7→ R(α∗(ω), ω, z) is increasing.

D Properties and extensions

D.1 Structural uncertainty

Assume throughout this section that Θ is closed and bounded. Endow the space of

invariant representations R : A × Θ → R with the sup-norm. For a given decision

rule M and invariant representation R, let Q̃R(θ|M) := {a ∈ A : M(R(a, θ)) = a}.

In words, Q̃R(θ|M) is the set of actions that are consistent with market clearing in

state θ.

An open neighborhood of Q̃R(·|M) is a set-valued and open-valued correspondence

U : Θ ⇒ 2A such that Q̃R(θ|M) ⊂ U(θ) for all θ. The map R ⇒ Q̃R(θ|M) is uniformly

continuous at R if it is uniformly upper and lower hemicontinuous. That is, for any

open neighborhood U of Q̃R(·|M) and any open-valued correspondence V : Θ ⇒ 2A

such that Q̃R(θ|M) ∩ V (θ) 6= ∅ for all θ, there exists a neighborhood N of R such
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that R̂ ∈ N implies, for all θ ∈ Θ, i) Q̃R̂(θ|M) ⊂ U(θ), and ii) Q̃R̂(θ|M)∩V (θ) 6= ∅.

Definition 12. A decision rule M is robust to structural uncertainty at R if

R ⇒ Q̃R is uniformly continuous at R

For any S ⊆ Θ let Q̃R|S be the restriction of Q̃R to S. Say that R ⇒ Q̃R is

almost uniformly continuous at R if ∀ ε > 0 ∃ S ⊆ Θ with λ(S) > 1 − ε such that

R ⇒ Q̃R|S(θ|M) is uniformly continuous at R (where S replaces Θ in the definition

of uniform continuity).

Definition 13. A decision rule M is weakly robust to structural uncertainty

at R if R ⇒ Q̃R is almost uniformly continuous at R

The interpretation of robustness to structural uncertainty is that the decision

rule should induce almost the same joint distribution of states and actions for small

perturbations to the invariant representation. This in turn implies that the principal’s

expected payoff will be continuous in the function R. It turns out CUI (CWUI) implies

implementability via a decision rule that is (weakly) robust to structural uncertainty.

Theorem 4. If (Q,P ) are CUI then they are implementable given invariant repre-

sentation R with an essentially continuous decision rule that is robust to multiplicity

and structural uncertainty at R. If (Q,P ) are CWUI then they are implementable

with an essentially continuous decision rule that is weakly robust to multiplicity and

weakly robust to structural uncertainty at R.

To prove , we make use of the following intermediate results.

Lemma 11. Given a function F : X × [0, 1] → X on a compact subset X of an

Euclidean space, define the function G(t) = {x ∈ X : F (x, t) = x}. Assume t 7→

F (x, t) is continuous. If G(t) is single-valued and x 7→ F (x, t) is continuous on an

open neighborhood of G(t) then G is upper and lower hemicontinuous at t.
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Proof. Since G(t) is single-valued upper hemicontinuity implies lower hemicontinuity.

We want to show that for any open neighborhood V of G(t) there exists a neighbor-

hood U of t such that G(t′) ⊆ V for all t′ ∈ U .

Claim 1. For any open neighborhood V of G(t) there exists a κ > 0 such that |F (x, t)−

x| > κ ∀ x ∈ X \ V . The proof of claim 1 is as follows. X \ V is a closed subset of

a compact set, and thus compact. The function x 7→ |F (x, t)− x| is continuous, so it

attains its minimum on X \V . Since G(t) is unique and G(t) 6∈ X \V , this minimum

is strictly greater than zero, so the desired κ exists.

To complete the proof of Lemma 11, we need to show that there exists an open

neighborhood U of t such |F (x, t′) − x| > κ ∀ x ∈ X \ V, t′ ∈ U . By continuity

of t′ 7→ F (x, t′) − x, for each x there exists a εx such that |t′ − t| < εx implies

|F (x, t′) − x| > κ. For each x, define `(x, ε) = min{|F (x, t′) − x| : |t′ − t| ≤ ε/2},

which exists by continuity of F and compactness of |t′ − t| ≤ ε/2.

Define B(x) = {x′ ∈ X : `(x′, εx) > κ}. By continuity of x 7→ F (x, t′) − x, B(x)

contains an open neighborhood of x (Berge’s maximum theorem). Let B̃(x) be this

open neighborhood. The set ∪x∈X\V B̃(x) covers X \V . Then by compactness of X \V

there exists a finite sub-cover. Let u be the smallest εx corresponding to an x such

that B̃(x) is in the finite sub-cover. Then U = {t′ ∈ (0, 1) : |t′ − t| < u}.

Proposition 7. Given a continuous function F : X ×Θ× (0, 1)→ X on a compact

subset X of a Euclidean space, define the function G(t, θ) = {x ∈ X : F (x, θ, t) = x}.

Let S be any compact subset of Θ such that G(t, θ) is single-valued for all θ ∈ S.

Then t⇒ G(t, θ) is upper and lower hemicontinuous at t, uniformly over S.

Proof. Since G(t, θ) is single-valued on S it suffices to show upper hemicontinuity. Let

V (θ) be an open neighborhood of θ 7→ G(t, θ) on S. Without loss of generality (since

Θ is compact and G(t, θ) single-valued on S), let V (θ) = {x ∈ X : |G(t, θ)− x| < δ}

for some δ > 0, or equivalently, V (θ) = ∪x∈G(t,θ)Nδ(x). We want to show that there

exists a neighborhood U of t such that t′ ∈ U implies G(t′, θ) ⊆ V (θ) for all θ ∈ S.
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Claim 1. X \ V (θ) is upper and lower hemicontinuous on S: Since G(t, θ) is single-

valued, X \V (θ) = X \Nδ(G(t, θ)) where Nδ(x) is the open ball around x with radius

δ. We first show upper hemicontinuity. Let W be an open set containing X \ V (θ).

Without loss of generality, let W = X \ N̄δ−ρ(G(t, θ)) for some ρ ∈ (0, δ) where

N̄δ−ρ(x) is the closed ball around x with radius δ− ρ.45 By Lemma 11, we know that

θ 7→ G(t, θ) is upper and lower hemicontinuous at all θ ∈ S. By upper hemicontinuity

of θ 7→ G(t, θ) at θ, there exists an open neighborhood B of θ such that θ′ ∈ B implies

|x − G(θ, t)| < (δ − ρ)/2 for all x ∈ G(θ′, t). Then N̄δ−ρ(G(t, θ)) ⊂ ∪x∈G(t,θ′)Nδ(x) =

V (θ′) for all θ′ ∈ B. Thus V (θ′) ⊂ W for all θ′ ∈ B, which shows upper hemicontinuity.

For lower hemicontinuity, let W ⊂ X be an open set intersecting X \ V (θ). This

holds if and only if there exists x′ ∈ W such that |x′ − G(t, θ)| > δ. By upper

hemicontinuity of θ 7→ G(t, θ) at θ, there exists an open neighborhood B of θ such

that θ′ ∈ B implies |x − G(θ, t)| < (|x′ − G(t, θ)| − δ)/2 for all x ∈ G(θ′, t). Then

θ′ ∈ B implies |x′ − x| > δ for all x ∈ G(t, θ′). Thus x′ 6∈ ∪x∈G(t,θ′)Nδ(x) = V (θ′), so

W ∩X \ V (θ′) 6= ∅ for all θ′ ∈ B, which shows lower hemicontinuity. This completes

the proof of Claim 1.

We know from Lemma 11 that for each θ ∈ S there exists εθ, κθ > 0 such that

|t′ − t| < εθ =⇒ |F (x, θ, t′)− x| > κθ ∀ x ∈ X \ V (θ). (5)

Claim 2. For each θ ∈ S there exists an open neighborhood B(θ) of θ such that

θ′ ∈ B(θ) and |t′ − t| < εθ =⇒ |F (x, θ, t′)− x| > κθ ∀ x ∈ X \ V (θ′),

where εθ, κθ satisfy (5). The proof of this claim is as follows. Define

z(θ, ε) := min{|F (x, θ, t′)− x| : |t′ − t| ≤ ε/2, x ∈ X \ V (θ)},
45W so defined is open in X, but not in the space of which X is a subset.
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which is well defined by compactness of X \V (θ). By Berge’s maximum theorem and

Claim 1, θ 7→ z(θ, ε) is continuous at any θ ∈ S. By (5) we know that z(θ, εθ) > κθ

for all θ ∈ S. Then for any θ ∈ S there exists an open neighborhood B(θ) of θ such

that θ′ ∈ B(θ) implies z(θ′, εθ) > κθ. This proves Claim 2.

To complete the proof of Proposition 7, note that ∪θ∈SB(θ) is an open cover of

S. By compactness of S there exists a finite sub-cover. Let I be the set of θ ∈ S that

index this sub-cover. Let ε = min{εθ : θ ∈ I}/2. Then

|t′ − t| < ε =⇒ |F (x, θ, t′)− x| > 0 ∀ x ∈ X \ V (θ) and θ ∈ S.

Since G(t′, θ) is non-empty for all t′, θ we have that |t′ − t| < ε implies that for all θ,

G(t′, θ) ⊆ V (θ), which shows upper hemicontinuity as desired.

Proof. There are two cases to consider: P (θ) ≤ P (θ̄) or P (θ) > P (θ̄).

If P (θ) ≤ P (θ̄) P is weakly increasing by Theorem 1. Then as noted in Sec-

tion 2.5, (Q,P ) can be implemented by a decision rule M that is continuous. Let

F (a, θ, t) = M(R(a, θ, t)), where t continuously parameterizes the function R. Then F

is continuous since M is continuous. Moreover, G(t, θ) = Q̃(θ, t) will be single-valued

on all but a zero-measure set of states when M is weakly robust to multiplicity, and

single-valued everywhere when M is robust to multiplicity. Therefore for any ε > 0

we can find a compact set S such that G(t, θ) is single-valued for all θ ∈ S. When

M is robust to multiplicity let S = Θ. Then Proposition 7 applies, which gives the

result.

If P (θ) > P (θ̄) then Theorem 1 implies that P is weakly decreasing. As shown

in the proof of Theorem 1, there exists a closed set C ⊃ [P (θ̄), P (θ)] such that

M is continuous on C, but may have discontinuities outside of C. We are free to

define M outside of C, so long as there is no p 6∈ C such that R(M(p), θ) = p. Let

M(p) = Q(θ̄) if p 6∈ C and p > P (θ), and let M(p) = Q(θ) if p 6∈ C and p < P (θ̄).

Since P (θ) > P (θ̄) by assumption, and θ 7→ R(a, θ) is weakly increasing for all a,
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there exists ε > 0 such that (i) p−R(M(p), θ) > ε for all θ and all p 6∈ C, p > P (θ),

and (ii) R(M(p), θ) − p < ε for all θ and all p 6∈ C, p < P (θ̄). Therefore, conditions

(i) and ii will continue to hold for some ε′ > 0 and any R′ that is sufficiently close

to R in the sup-norm. This implies that it is sufficient to establish upper and lower

hemicontinuity of R ⇒ Q̃R for the restriction of M to C. Since M is continuous on

C the argument applied to above the P (θ) ≤ P (θ̄) P case holds here as well.

The important implication of Theorem 4 is that small changes in R lead to small

changes in the principal’s expected payoff. Even though under the perturbed invariant

representation R′ there may be multiple equilibria, the joint distribution of states,

prices and actions associated with each one will be close to that of the original equi-

librium under R.

If M is robust to multiplicity but has discontinuities on P̄M then it is not robust

to structural uncertainty, at least when the discontinuity is not essential, i.e. when

the left and right limits of M exist.46 As discussed in Section 1, this further motivates

the restriction to essentially continuous decision rules. Let θM(p|R) = {θ ∈ Θ :

R(M(p), θ) = p} be the set of states at which p could be an equilibrium price under

M and R, and let P̄M(R) := {p ∈ P : θM(p) 6= ∅} be the set of prices that could

arise in equilibrium.

Lemma 12. Assume that M is robust to multiplicity. If M has a non-essential dis-

continuity on P̄M(R) then it is not robust to structural uncertainty at R.

Proof. Suppose M is discontinuous at p′, and let θ′ ∈ θM(p′|R). First, suppose that

p 7→ R(M(p), θ′) is continuous at p′. Since M is discontinuous, there exists an open

neighborhood U or M(p′) such that for any ε > 0 there exists p′′ ∈ Nε(p
′) with

M(p) 6∈ U . Since p 7→ R(M(p), θ′) is continuous at p′, for any δ > 0 we can choose ε

small to guarantee |R(M(p′′), θ′)−R(M(p′), θ′)| < δ. But then let R̂ be a continuous

46Given that A is compact, an essential discontinuity can be pictured as a point at which M oscil-
lates with vanishing wavelength. The only potential benefit to the principal of using a discontinuous
M is to avoid multiplicity, but an essential discontinuity is not useful in this regard.
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function in a δ-neighborhood of R such that R̂(M(p′′), θ′) = p′, so M(p′′) ∈ Q̃R̂(θ′|M).

Therefore we cannot have upper hemicontinuity of R 7→ Q̃R(θ′|M) at R.

Now, suppose p 7→ R(M(p), θ′) is discontinuous at p′. Assume M is left-continuous

at p′ (symmetric argument for right-continuous, and similar for removable discontinu-

ity). Then there exists ε > 0 such that either R(M(p), θ′) < p for all p ∈ [p′− ε, p′) or

R(M(p), θ′) > p for all p ∈ [p′− ε, p′). Assume without loss of generality that the for-

mer holds. Then let R̂ be a continuous function such that R̂(M(p), θ′) > R(M(p), θ′)

for all p ∈ [p′ − ε, p′). For R̂ close to R there will be a neighborhood U or p′ such

that R̂(M(p), θ′) 6= p for all p ∈ U . This is because M is discontinuous at p′. Then

R 7→ Q̃R(θ′|M) cannot be lower hemicontinuous at R.

Lemma 12 shows that essential continuity is, to an extent, necessary for robustness

to structural uncertainty.

D.2 Beyond uniqueness

The key insight is that even if a decision rule induces multiple equilibria, at least one

of these will be weakly uniquely implementable. This is established via the following

intermediate result.

Proposition 8. Assume R is weakly increasing in θ. If M ∈ M induces multiple

equilibria then at least one has a monotone price function (strictly monotone if R is

strictly increasing in θ).

Proof. Claim 0. For any θ′ ∈ (θ, θ̄) and p′ such that θ′ ∈ θM(p′), there exist p′′ such

that θM(p′′) ∩ {θ, θ̄} 6= ∅, θM(p) 6= ∅ for all p ∈ (min{p′, p′′},max{p′, p′′}) and M is

continuous on (min{p′, p′′},max{p′, p′′}) (when this interval is non-empty).

Let θ′ ∈ (θ, θ̄) be arbitrary, and let p′ be such that θ′ ∈ θM(p′). If {p ≤ p′ :

θM(p) = ∅} is empty then p′′ = arg mina∈AR(a, θ) satisfies the conditions of the

claim. Similarly, if {p ≥ p′ : θM(p) = ∅} is empty then p′′ = arg maxa∈AR(a, θ̄)

satisfies the conditions of the claim. Assume that {p ≤ p′ : θM(p) = ∅} 6= ∅ and

{p ≥ p′ : θM(p) = ∅} 6= ∅. Let p = sup{p ≤ p′ : θM(p) = ∅} and p̄ = inf{p ≥ p′ :
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θM(p) = ∅}. Since M ∈ M, we have p < p′ < p̄. Since M must be continuous on

(p, p̄), we have θM(p) ∩ {θ, θ̄} 6= ∅ and θM(p̄) ∩ {θ, θ̄} 6= ∅. This proves Claim 0.

Claim 1. Let θ′ ∈ (θ, θ̄) and p′ be such that θ′ ∈ θM(p′). Let p′′ be such that θM(p) 6= ∅

for all p ∈ (min{p′, p′′},max{p′, p′′}) andM is continuous on (min{p′, p′′},max{p′, p′′})

(when this interval is non-empty). Then if θ ∈ θM(p′′) and p′′ ≤ p′ (p′′ ≥ p′) there

exists an equilibrium with a price function that is increasing (decreasing) on [θ, θ′].

Similarly, if θ̄ ∈ θM(p′′) and p′′ ≥ p′ (p′′ ≤ p′) there exists an equilibrium with a price

function that is increasing (decreasing) on [θ′, θ̄].

We will show the claim for θ̄ ∈ θM(p′′) and p′′ ≥ p′; all others cases are symmetric.

For any θ, the set θ−1
M (θ) is compact: if R(M(p), θ) 6= p then this holds for all p̃ in a

neighborhood p, since M ∈M is continuous around equilibrium prices. If p′ = p′′ then

we are done: convexity of θM(p) (Lemma 4) implies that there is a constant, and thus

monotone, equilibrium price function on [θ′, θ̄]. Assume instead that p′′ > p′. If there

exists θ∗ ∈ (θ′, θ̄) such that p∗ > p′′ for any p∗ ∈ θ−1
M (θ′′) then there exists θ̃ ∈ (θ′, θ̄)

such that p′′ ∈ θ−1
M (θ̃), by continuity of M on (p′, p′′) and Lemma 6. Then convexity of

θM(p′′) implies that we can construct a flat price function above θ̃. Therefore assume

no such θ∗ exists. By a symmetric argument, we can assume that θ−1
M (p)∩ [p′, p′′] 6= ∅

for all θ ∈ [θ′, θ̄].

We want to construct an increasing equilibrium price function on [θ′, θ̄]. Consider

an arbitrary price function P̃ such that P̃ (θ) ∈ θ−1
M (θ) ∩ [p′, p′′] for all θ ∈ [θ′, θ̄],

P̃ (θ) = p′, and P̃ (θ̄) = p′′. We will show that any violations of monotonicity can be

ironed without leading to further violations.

Claim 1.2. Suppose P̃ (θ2) < P̃ (θ1) < P̃ (θ3) for θ̄ > θ3 > θ2 > θ1 >. Then there exists

p ∈ θ−1
M (θ2) ∩ [P̃ (θ1), P̃ (θ3)].

Claim 1.2 follows immediately from Lemma 6. This in turn shows that Claim 1

holds for θ̄ ∈ θM(p′′) and p′′ ≥ p′, which is what we wished to show.

Claim 0 and Claim 1 together imply the existence of a monotone price function.

If R is strictly increasing in θ then measurability of the action with respect to the
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price implies that P must be strictly monotone.

Theorem 1 says that monotonicity of the price function is a necessary condition

for CWUI. Monotonicity is not in general sufficient. However, if we know that P

is monotone and is induced by some M ∈ M then monotonicity of P suffices for

CWUI in many settings. This is the case when the environment is fully bridgeable,

as defined in Section 2.5. Under this assumption, any increasing selection from the

price functions induced by M is CWUI.

Theorem 5. Assume R is strictly increasing in θ and the environment is fully bridge-

able. If M ∈M induces multiple equilibria then at least one is characterized by (Q,P )

that are CWUI.

Proof. Let (Q,P ) be an equilibrium induced by M , such that P is strictly monotone,

which exists by Proposition 8. SinceM ∈M induces (Q,P ), P can have no degenerate

discontinuities. Let M̂ = M on P (Θ) and P \ [inf P (Θ), supP (Θ)]. We show how to

define M̂ for the remaining prices such that it is essentially continuous and weakly

uniquely implements (Q,P ).

Suppose P has a non-degenerate discontinuity at θ∗, and let p = limθ↗θ∗ P (θ) and

p̄ = limθ↘θ′ P (θ). If the discontinuity at θ∗ is bridgeable then we can define M̂ on

[min{p, p̄},max{p, p̄}] such that (i) M̂(p) = limθ↗θ∗ Q(θ), (ii) M̂(p̄) = limθ↘θ∗ Q(θ),

and (iii) p = R(M̂(p), θ∗) for all p ∈ [min{p, p̄},max{p, p̄}]. Since the environment

is fully bridgeable, this can be done for all discontinuities. Thus M̂ so defined is

continuous on [inf P (Θ), supP (Θ)] and coincides with M on M̂ = M on P (Θ) and

P\[inf P (Θ), supP (Θ)]. Since M was essentially continuous, so is M̂ . Moreover, there

are multiple market-clearing prices only in states at which P had a discontinuity. Since

P is monotone, this set has measure zero.

Say that the principal is pessimistic if they evaluate a set of possible equilibria

according to the worst case.
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Corollary 2. Assume R is strictly increasing in θ and the environment is fully bridge-

able. If the principal is pessimistic then the restriction to (Q,P ) that are CWUI is

without loss of optimality.

The conclusion of Theorem 5 can be extended in two ways. First, the result extends

to weakly increasing R, when the environment satisfies a slightly stronger notion of

bridgeability. Second, since CWUI price and action functions can generally be very

well approximated by CUI price and action functions, we can replace CWUI with

virtually CUI in the conclusion of Theorem 5. This requires some mild additional

conditions, which guarantee that any CWUI (Q,P ) can be approximated arbitrarily

well by some CUI (Q̂, P̂ ).

Theorem 5 also simplifies the problem of a principal who takes a less extreme ap-

proach to multiplicity than the strict worst-case preferences described above. Consider

a principal who lexicographically evaluates policies that induce multiple equilibria:

the principal first evaluates a decision rule according to the worst equilibrium that it

induces. Among those decision rules with the same worst-case equilibrium payoff, the

principal chooses based on the best equilibrium that each induces (or indeed some

other function of the remaining equilibria).47 By Theorem 5 we know that the highest

worst-case guarantee is exactly the maximum payoff over the subset of decision rules

inM that are weakly robust to multiplicity. Once this value has been determined, the

goal of the principal is to choose the decision rule with the best equilibrium outcome,

subject to not inducing any equilibrium with a payoff below this worst-case bound.

Assume first that the principal’s payoffs do not depend directly on the price;

the principal cares only about the joint distribution of states and actions (a similar

discussion will apply to other preferences). Assume that there is a unique optimal

CWUI action function Q∗, implemented uniquely by decision rule M∗ (if there are

multiple optimal CWUI action functions then Condition 1 in Proposition 9 below

must hold for one of them). If this is the case then, by Theorem 5, the principal with

47Such preferences are similar in spirit to these studied in the context of robust mechanism design
(Börgers, 2017) and information design (Dworczak and Pavan, 2020).
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lexicographic preferences wants to choose a decision rule that implements Q∗ as one

of its equilibrium outcomes; if Q∗ is not one of the equilibrium outcomes then there

will be some other CWUI action function induced by the decision rule, which will

be worse than Q∗ by definition. This pins down the decision rule for all prices in the

range {R(Q∗(θ), θ) : θ ∈ Θ}; any optimal decision rule must coincide with M∗ for

such prices. Moreover, Q∗ will be an equilibrium outcome of any such decision rule.

This discussion implies the following.

Proposition 9. Let Q∗ be the set of optimal CWUI action functions. Then the

optimization constraints of the principal with lexicographic multiplicity preferences

can be stated as follows: choose M̂ subject to

1. ∃Q ∈ Q∗ such that M̂(R(Q(θ), θ)) = Q(θ) for all θ ∈ Θ,

2. M̂ ∈M.

These constraints can greatly simplify the problem of finding optimal policies for a

principal with lexicographic preferences over multiple equilibria. Consider the example

of Section 4.1. The question is if, for a dovish principal who cannot implement the

first best, it is possible to improve the best-case equilibrium while still guaranteeing

that no equilibrium gives a payoff less than that of the virtually optimal CWUI policy.

In this problem, the answer is no.

Proposition 10. Assume that π has the pivot property and the principal is dovish.

If the principal takes the lexicographic approach to equilibrium multiplicity, there is

no gain from considering action functions that are not CWUI.

Proof. Consider a virtually optimal action function, defined by the interval (θ′, θ′′)

over which ironing occurs. Then, as shown above, the virtually optimal decision rule

is pinned down on P ∗(Θ). The only potential changes that could be made to the

decision rule when allowing for multiplicity are on (R(0, θ), R(1, θ)). Changing the

decision rule on this range will can only induce equilibria in which lower actions are

taken for states below −c
b

, which is worse for the principal.
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D.3 CUI with weakly increasing R.

Relaxing the assumption of strictly increasing θ 7→ R(a, θ) to weakly increasing,

we obtain a similar characterization to Theorem 2. It is necessary, however, to add

a condition to account for actions for which the induced price is constant over an

interval of states.

Consider (P,Q) implementable. (P,Q) satisfies market-clearing and measurability

by Observation 1. Moreover suppose that R(Q(θ), θ) = R(Q(θ), θ′) with θ 6= θ′. If

Q(θ′) 6= Q(θ) then there will be multiplicity, since by measurability P (θ′) 6= P (θ)

but P (θ) = R(Q(θ), θ′) is a market clearing price in state θ′. The only modifications

needed to extend Theorem 2 are those that rule out such instances of multiplicity.

Proposition 11. Assume R is weakly increasing in θ. Then (Q,P ) is CUI iff

1. P (θ) = R(Q(θ), θ) for all θ,

2. P is weakly monotone.

3. Q is continuous and BC1. Moreover, if P is decreasing, then Q is BC2.

4. For all θ, θ′, P (θ) = P (θ′) or P (θ) = R(Q(θ), θ′) implies Q(θ′) = Q(θ).

Proof. (⇒) The main difference with Theorem 2 lies in part 4. The first part is

the measurability condition that was already necessary for implementation. For the

second part, first notice that if P (θ) = R(Q(θ), θ′) then P (θ′) = P (θ): otherwise there

are multiple equilibria at the state θ′, one with price P (θ) and one with price P (θ′).

Measurability implies that Q(θ) = Q(θ′).

(⇐) We cannot construct the function M that continuously uniquely implements

(P,Q) in the same way as the one in Theorem 2 since P is not necessarily injective:

P−1(p) is not necessarily a singleton anymore. However, the measurability condition

in 4 guarantees that θ, θ′ ∈ P−1(p) then Q(θ) = Q(θ′) so Q(P−1(p)) is a singleton for

all p ∈ P (Θ). The construction of M outside of P (Θ) is the same as in Theorem 2.
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E Bridgeability and CWUI

To characterize the set of outcomes (Q,P ) that are CWUI, first, note that if (Q,P )

are CWUI, then, since P must be monotone by Theorem 1, any discontinuity in P

must be a jump discontinuity, and P can have at most countably many discontinuities.

Moreover, Q can be discontinuous at θ only if P is as well: otherwise it would not be

possible for Q to be implemented by an M that is continuous at P (θ). Thus Q can

also have at most countably many discontinuities. Finally, essential continuity of the

implementing M gives the following result.

Lemma 13. The one-sided limits of any CWUI Q, denoted by limθ↗θ′ Q(θ) and

limθ↘θ′ Q(θ), must exist for all θ′.

Proof. Let {θn} be an increasing sequence converging to θ′. Suppose P is increas-

ing (the argument is symmetric if P is decreasing). Then {P (θn)} is an increasing

and bounded sequence, and so converges. Denote this limit by p̄. Since M is essen-

tially continuous, it is continuous in a neighborhood of p̄. Hence limn→∞Q(θn) =

limn→∞M(P (θn)) = M(p̄).

Suppose P has a discontinuity at θ∗, and let p = limθ↗θ∗ P (θ) and p̄ = limθ↘θ′ P (θ).

Definition 14. Say that a discontinuity in P at θ∗ is bridgeable given Q if there

exists a continuous function γ : [min{p, p̄},max{p, p̄}] → A such that i) γ(p) =

limθ↗θ∗ Q(θ), ii) γ(p̄) = limθ↘θ∗ Q(θ), and iii) p = R(γ(p), θ∗) for all p ∈ [min{p, p̄},max{p, p̄}].

We say that the environment is fully bridgeable if for any (Q,P ), all discontinuities

in P are bridgeable.

Observation 2. A discontinuity in P at θ∗ is bridgeable iff there exists a continuous

function γ : [0, 1]→ A such that i) γ(0) = limθ↗θ∗ Q(θ), ii) γ(1) = limθ↘θ∗ Q(θ), and

iii) x 7→ R(γ(x), θ) is strictly monotone.

Observation 2 is useful because the condition that x 7→ R(γ(x), θ) is strictly mono-

tone is easier to check than the fixed-point condition in the definition of bridgeability.
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Proposition 12. Assume R is strictly increasing in θ. Then (Q,P ) is CWUI iff

1. P (θ) = R(Q(θ), θ) for all θ.

2. P is strictly monotone.

3. If Q is discontinuous at θ∗ then P has a bridgeable discontinuity at θ∗.

4. Q̄ := limθ→θ̄Q(θ) and Q := limθ→θQ(θ) exist. Moreover, if P is decreasing, then

Q is not maximal at the bottom and Q̄ is not minimal at the top.

Proof. Given Theorem 2, we need only show that Q can have a discontinuity at θ∗

iff P has a bridgeable discontinuity at θ∗. Clearly Q can be discontinuous at θ∗ iff

P is continuous at θ∗ (otherwise M would need to be discontinuous at P (θ∗)). As

shown in the proof of Theorem 1, P can be discontinuous at θ∗ only if θM(p) = θ∗ on

(min{limθ↗θ∗ P (θ), limθ↘θ∗ P (θ)},max{limθ↗θ∗ P (θ), limθ↘θ∗ P (θ)}). This is possible

iff there exists γ satisfying the definition of bridgeability (in which case we take M = γ

on this interval).

Of the conditions in Proposition 12, the bridgeability condition is in theory the

most difficult to verify. Fortunately, we show that most relevant environments are

fully bridgeable and so this condition can be ignored. If the environment if fully

bridgeable then we can replace condition 3 in Proposition 12 with the following: Q

can be discontinuous at θ∗ iff P is as well. (Or equivalently: limθ↗θ∗ R(Q(θ), θ) 6=

limθ↘θ∗ R(Q(θ), θ).) Thus, from a practical perspective, many applied problems can

be solved simply by optimizing over the action function Q subject to the constraint

that R(Q(θ), θ) be strictly monotone.

E.1 Bridgeability: Sufficient Conditions

This section discusses bridgeability further. We provide sufficient conditions for the

various notions of bridgeability, and show that they are satisfied in common settings.

Let (A,�) be a partially ordered set. Say (A,�) is upward directed if for any two

a′′, a′ ∈ A there exists c ∈ A such that c � a′′ and c � a′. Downward directed is
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defined analogously.48 We use the notation a′′αa
′ ≡ αa′′ + (1 − α)a′. Say that � is

preserved by mixtures if for any a′′ � a′ and α ∈ (0, 1), a′′ � a′′αa
′ � a′. Finally,

say that a 7→ R(a, θ) is strongly monotone with respect to � if a′′ � a′ and a′′ 6= a′

implies R(a′′, θ) > R(a′, θ). We use the notation a′′αa
′ ≡ αa′′+(1−α)a′. The following

proposition gives sufficient conditions for full bridgeability, but it is also useful because

the proof of the existence of a monotone path is constructive. This construction could

potentially be useful in applications.

Proposition 13. Let (A,�) be a partially ordered set that is both upward and

downward directed, and such that � is preserved by mixtures. If R(·, θ) is strongly

monotone with respect to � then there is a monotone path between a′ and a′′ at θ iff

R(a′′, θ) 6= R(a′, θ)

Proof. The condition R(a′, θ) 6= R(a′′, θ) is obviously necessary. It remains to show

that it is sufficient. That is, we want to show that there exists a monotone path

between any a′′, a′ ∈ A such that R(a′, θ) 6= R(a′′, θ). Assume without loss that

R(a′′, θ) > R(a′, θ). If a′′ � a′ then the ray from a′′ to a′ is a monotone path. This

follows since � is preserved by mixtures and R(·, θ) is strongly monotone.

Suppose a′ and a′′ are not ordered. Let ā be an upper bound for a′′, a′, i.e. ā � a′′

and ā � a′, and let a be a lower bound. Both exist since (A,�) is upward and

downward directed. By continuity of R, there exists λ̄ ∈ (0, 1) such that R(āλ̄a
′, θ) =

R(a′′, θ). Similarly there exists λ ∈ (0, 1) such that R((a′′λa), θ) = R(a′, θ).

We will now construct one-half of the monotone path from a′ to a′′. Let t :

[0, 1] → [λ̄, 1] × [0, 1] be a continuous and strictly monotone function, and let ti(x)

be the ith coordinate of t(x). For each x ∈ (0, 1), we have R(āt1(x)a
′, θ) > R(a′′, θ),

R(at2(x)a
′, θ) < R(a′, θ), and āt1(x)a

′ � āt1(x)a
′. These properties follow from strong

monotonicity of R and the fact that � is preserved under mixtures.

For each x ∈ (0, 1), define f(x) by R((āt1(x)a
′)f(x)(at2(x)a

′), θ) = xR(a′′, θ) + (1 −

x)R(a′, θ). We claim that x 7→ (āt1(x)a
′)f(x)(at2(x)a

′) is a continuous function. It is

48A lattice is an upward and downward directed set, but the converse is not true.
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a well-defined function by strong monotonicity of R. It is continuous since R and t

are continuous. Moreover, by construction x 7→ R((āt1(x)a
′)f(x)(at2(x)a

′), θ) is strictly

increasing, and (āt1(0)a
′)f(0)(at2(0)a

′) = a′. Therefore x 7→ (āt1(x)a
′)f(x)(at2(x)a

′) forms

one half of a monotone path from a′ to a′′. The other half of the monotone path is

defined analogously, using a′′ and λ in place of a′ and λ̄.

Proposition 13 makes it easy to identify when a discontinuity will be bridgeable.

For example, it implies that when A is a chain a gap between a′ and a′′ will be

bridgeable at θ iff R(·, θ) is strictly monotone on (a′, a′′).

More importantly, Proposition 13 implies that every discontinuity will be bridge-

able when A = ∆(Z), i.e. the set of distributions on some set Z, under mild as-

sumptions on R. Let π(z, θ) be a real-valued function, with θ 7→ π(z, θ) continuous

for all z. For example, π(a, θ) could represent a company’s cash flow as a function

of the state and government intervention z ∈ Z. In state θ, any a ∈ A in induces a

distribution F (a, θ) on R via π(·, θ). Let �FOSD be the first-order stochastic domi-

nance order. This partial order on ∆(R) induces a preorder � on A. Define a′′ � a′

by a′′ � a′ and ¬(a′ � a′′) if a′′ 6= a′, and a′ � a′ for all a′. If π(z′, θ) 6= π(z′′, θ) for

all z′′ 6= z′ then �=�. Then a 7→ R(a, θ) is strongly monotone if F (a′′, θ) � F (a′, θ)

implies R(a′′, θ) � R(a′, θ). The partially ordered set (A,�) satisfies the conditions

of Proposition 13 (when π(z′, θ) 6= π(z′′, θ) for all z′ 6= z′′ it is in fact a lattice).

Corollary 3. IfA = ∆(Z) and for all θ a 7→ R(a, θ) is strongly monotone with respect

to the order induced by first-order stochastic dominance, then the environment is fully

bridgeable.

F Representing the market

One reason for the market to fail to admit an invariant representation is if for some

decision rule M , there exist multiple equilibria with the same action function, but dif-

ferent price functions. However, it is relatively straightforward to extend our analysis

to this type of market, using a representation via a market-clearing correspondence

59



R : A × Θ 7→ 2P . The more interesting and challenging scenario, in terms of repre-

senting the market, is when there are global effects : it is not sufficient to know the

equilibrium action in state θ in order to determine the equilibrium price in that state

(or even the set of equilibrium prices in state θ). Nonetheless, we obtain representa-

tions.

F.1 Equilibrium inferences and global effects

To illustrate the challenges involved in modeling markets in which global effects are

present, and to understand the reasons such effects might arise, consider the REE

asset market of Section 1.1, Example 3. Recall that as stated in Proposition 1, this

markets admits an invariant representation.

The key feature of this environment is that in addition to their private signals,

investors learn about the state from the price. In contrast to the private-values setting

of Section 1.1 Example 1, other investors’ signals are informative about a payoff-

relevant state, and thus investors draw inferences from the price. Formally, this can

be seen in the demand optimality condition

Xi(p, si) = arg max
x

E
[
ui
(
x · (π(M(p), θ)− p)

)
| si, PM(θ) = p

]
(6)

The difficulty with analyzing market-based policy in this environment can be

seen by examining (6). The principal’s decision rule affects investors in two ways.

The first is a direct forward guidance effect: the decision rule determines what action

investors anticipate, conditional on the price, and thus affects the anticipated dividend

π(M(p), θ). However there’s also an indirect informational effect, arising from the

fact that when formulating their demand for the price of p, investors condition on

the event {θ ∈ Θ : PM(θ) = p}. The decision rule shapes the entire equilibrium price

function PM , and thus determines what information investors infer about the state

from the price. The subtlety of this informational effect is that investor beliefs in a give

state will depend on the equilibrium price and principal actions in other states. Thus
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global properties of the decision rule and the equilibrium price and action functions

will matter in determining the price in a given state. Such global dependence makes

it more difficult to analyze the principal’s problem in outcome space (the space of

price and action functions); modifying the action and price function for some states

may necessitate modifications elsewhere. This introduces global constraints into the

principal’s problem.

To understand this difficulty, consider the REE asset market model described

above, and let Q1, P1 an implementable action and price function. The price function,

depicted in Figure 5a, is constant over the interval [θ1, θ3]. Let Q2 be another action

function, such thatQ2(θ) = Q1(θ) for θ ≤ θ2 andQ2 6= Q1 elsewhere. We want to know

if Q2 is implementable, and if so, what the corresponding price function will look like.

It is natural to expect that if Q2 is implementable, the corresponding price function P2

will differ from P1 for states above θ2. Suppose that P2 > P1 above θ2. However, can

it be the case that the price functions also differ below θ2, where the action functions

are the same? Suppose that this is not the case; P2 = P1 below θ2. Let θ∗ ∈ (θ1, θ2) be

a state in which Q1 and Q2 coincide, so Q1(θ∗) = Q2(θ∗) = a∗. In the Q1 equilibrium,

the information revealed by a price of P1(θ∗) is {θ : P1(θ) = P1(θ∗)} = [θ1, θ3].

Therefore, in state θ∗ investor i’s demand is given by

Xi(P1(θ∗), si) = arg max
x

E
[
ui
(
x · (π(a∗, θ)− p)

)
| si, θ ∈ [θ1, θ3]

]
Similarly, in the Q2 equilibrium, a price of P2(θ) reveals that θ ∈ [θ1, θ2], so i’s de-

mand in state θ is Xi(P2(θ∗), si) = arg maxxE
[
ui
(
x · (π(a∗, θ)− p)

)
| si, θ ∈ [θ1, θ2]

]
Notice that the beliefs of investor i, in this case, are first-order stochastically

dominated by those in the Q1 equilibrium. If θ 7→ π(a∗, θ) is strictly increasing then

the quantity demanded by every investor will be higher under the FOSD dominant

beliefs. This means that in order for markets to clear at state θ∗ in the Q2 equilibrium,

the price must be lower than in the Q1 equilibrium. Thus it cannot be that P1 = P2

for all states below θ2. However, if in the Q2 equilibrium the price must be lower
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Figure 5: Information effects and global dependence

for states in [θ1, θ2], as depicted in Figure 5b, then it may be that (Q2, P2) is not

even implementable. This will be the case if there is some state θ′ < θ1 such that

P2(θ′) = P2(θ∗), but Q2(θ′) 6= Q2(θ∗), as the principal’s action must be measurable

with respect to the price.

F.2 Invariant representation in REE

Despite the presence of informational effects, an invariant representation can be de-

rived under quite mild conditions.

Consider a more general version of the asset market model described above.

There are a unit mass of investors. Investors receive conditionally independent sig-

nals si about the state, with conditional distribution h(·|θ) on [s, s̄]. The ex-post

payoff to investor i who purchases a quantity x of the asset when the principal

takes action a, the state is θ, and the asset price is p is given by Vi(a, θ, x, p),

which is assumed to be strictly decreasing in p, strictly concave in x (to guaran-

tee a unique solution), and continuous in x, θ.49 For a fixed action a the demand of

investor i who observes signal s and knows that the state is in I ⊆ Θ is given by

xi(p|a, si, I) = maxxE[Vi(a, θ, x, p)|s, I].

Assume p 7→ xi is strictly decreasing for all i (which holds if, for example, that

(x, p) 7→ Vi(a, θ, x, p) satisfies strict single crossing). Investor heterogeneity, both of

utilities and beliefs, is allowed for, but for simplicity assume that there are finitely

many investor types, meaning finitely many distinct demand functions in the pop-

49For example, each investor has a strictly increasing Bernoulli utility function ui and wealth wi,
and Vi(a, θ, x, p) ≡ ui(x(π(a, θ)− p) + wi).
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ulation. Normalizing the aggregate supply of the asset to zero, the market clearing

condition is
∫ 1

0
xi(p|a, si, I)di = 0. Since there is a continuum of investors and a fi-

nite number of investor types aggregate demand is deterministic, conditional on the

state and the principal action a. Thus we can write market clearing in state θ as

X(p|a, I, θ) = 0. Let P ∗(a, I, θ) be the unique price that clears the market.

Given any price function P̃ : Θ → R, let IP̃ : Θ → 2Θ be the coarsest partition

with respect to which P̃ is measurable. We say that P̃ induces partition IP̃ . A rational

expectations equilibrium (REE) given decision rule M consists of a price function P̃

such that X(P̃ (θ)|M(P̃ (θ)), IP̃ (θ), θ) = 0 for all θ.

In many settings, there is a monotone relationship between investors’ private sig-

nals and their actions. It turns out that this is sufficient to guarantee the existence of

an a.e. invariant representation. Let ≥ be a complete order on the state space. Define

the level set of ≥ as Lθ ≡ {θ′ ∈ Θ : θ′ ≥ θ} ∩ {θ′ ∈ Θ : θ ≥ θ′}, and let the upper-set

be Uθ = {θ′ ∈ Θ : θ′ ≥ θ}.

Single Crossing. Vi(a, θ, x, p) satisfies single crossing in x, θ. Moreover, if θ′ ∈ Lθ then

Vi(a, θ
′, x, p)− Vi(a, θ′, x′, p) = Vi(a, θ, x, p)− Vi(a, θ, x′, p).

Belief Monotonicity. h(·|θ′′) strictly MLRP dominates h(·|θ′) for θ′′ > θ′.

The second piece of the Single Crossing assumption says that i has the same

preferences over quantities in states θ, θ′ ∈ Lθ, conditional on a, p.

To see how these two assumptions imply that the market admits an invariant

representation, consider the example illustrated in Figure 5. The issue encountered

there is that since state θ∗ belonged to different public information sets in the Q1 and

Q2 equilibria, i.e. different level sets of the equilibrium price function, the demands in

state θ∗ could also differ. In particular, we posited that if higher states are associated

with higher aggregate beliefs in the population (Belief Monotonicity) then demand

would be higher in state θ∗ when this state belongs to the public information set [θ1, θ3]

then when it belongs to the public information set [θ1, θ2]. This conclusion holds when
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higher beliefs are associated with higher demands (an implication of Single Crossing

and Athey (2002)). The flaw with the above of reasoning is that if demands are strictly

increasing in private signals conditional on the public information set [θ1, θ3] then we

cannot have a constant price over this interval to begin with: demand would be higher

at higher states within this interval. Thus it must be that demand is constant as a

function of private signals, which in turn implies that aggregate demand will be the

same whether the public information is [θ1, θ3] or [θ1, θ2].

The key observations that we make use of to prove that the market admits an

invariant representation are 1) that the principal’s action is measurable with respect

to the price, and 2) that public information sets revealed to investors are exactly the

level sets the price function. The following proposition formalizes the above argument.

Proposition 14. Assume there is a complete order on Θ such that Single Cross-

ing and Belief Monotonicity are satisfied. Then the market admits an a.e invariant

representation given (PA,ΘP). In particular, R(a, θ) = P ∗(a, Lθ, θ).

Proof. First, suppose (Q,P ) are equilibrium outcomes given M . We want to show

that P (θ) = P ∗(Q(θ), Lθ, θ) for almost all θ. Fix a state θ, and let IP (θ) be the

public information set to which θ belongs. If IP (θ) ⊆ Lθ then we are done, so

suppose IP (θ) \ Lθ is non-empty. Let x∗i (s) = xi(P (θ)|Q(θ), s, IP (θ)). Under Sin-

gle Crossing and Belief Monotonicity, x∗i (s) is weakly increasing in s. Suppose x∗i (s)

is strictly increasing in s. Then (using the so-called “continuum law of large num-

bers” convention) Belief Monotonicity implies that for any θ′ ∈ IP (θ) \ Lθ, we

have X(P (θ)|Q(θ), IP (θ), θ′) > (<)X(P (θ)|Q(θ), IP (θ), θ) if θ′ > (<)θ. In either

case, P ∗(Q(θ), IP (θ), θ′) 6= P ∗(Q(θ), IP (θ), θ). But contradicts the assumption that

θ′ ∈ IP (θ). Thus it must be that s 7→ x∗i (s) is constant. We now show that this implies

the result.

Assume s 7→ x∗i (s) is constant, and let x∗ = x∗i (s). Suppose there exists a measur-

able set A ⊂ IP (θ), and x′ such that

i. Vi(Q(θ), θ′, x′, P (θ)) > Vi(Q(θ), θ′, x∗, P (θ)) for all θ′ ∈ A.
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ii. µ(A|IP (θ)) > 0.

Then Single Crossing and Belief Monotonicity imply that s 7→ x∗i (s) is not con-

stant, which violates our previous conclusion. Therefore, it must be that no such A, x′

exist. If noA, x′ satisfy condition i. then there exists x∗ such that Vi(Q(θ), θ′, x′, P (θ)) ≤

Vi(Q(θ), θ′, x∗, P (θ)) for all x and θ ∈ IP . Then it must be that for all θ′ ∈ IP (θ), we

have P (θ′) = P ∗(Q(θ), Lθ, θ) = P ∗(Q(θ′), Lθ′ , θ
′) as desired. The only other pos-

sibility is that any A, x′ that satisfy condition i., do not satisfy condition ii., so

µ(A|IP (θ)) = 0. Let {(An, x′n)}n≥0 be the set of all such pairs. These can be di-

vided into two groups: x′n > x∗ and x′n < x∗. Assume that all are of the x′n > x∗

group (a symmetric argument applies to the x′n < x∗ group). Notice that there must

exist θ∗ ∈ IP (θ) such that Vi(Q(θ), θ∗, x∗, P (θ)) > Vi(Q(θ), θ∗, x′, P (θ)) for all x′ > x∗

(otherwise x∗ could not be optimal under any signal). Moreover, for any n, we have

(∪θ′∈An(Uθ′∩IP (θ)), x′n) ∈ {(An, x′n)} by Single Crossing, so without loss of generality,

assume that An = ∪θ′∈An(Uθ′∩IP (θ)) for all n, and assume An ⊂ An′ for n′ > n. Then

we can define a decreasing countable sequence θn such that Uθn ⊆ An ⊆ Uθn+1 for all

n and ∪nAn ⊆ ∪nUθn . Since Uθn ⊆ An = ∪θ′∈An(Uθ′ ∩ IP (θ)), Single Crossing implies

that x′, Uθn satisfy condition i., so µ(Uθn|IP (θ)) = 0. Then countable additivity of µ

implies µ(∪nUθn|IP (θ)) = 0, so µ(∪nAn|IP (θ)) = 0.

But then Vi(Q(θ), θ′, x′, P (θ)) ≤ Vi(Q(θ), θ′, x∗, P (θ)) for all x and all but a

conditionally-zero-measure subset of IP (θ). Thus for all θ′ ∈ IP (θ) \ A, we have

P (θ′) = P ∗(Q(θ), Lθ, θ) = P ∗(Q(θ′), Lθ′ , θ
′) as desired. Thus far, we have reasoned

for a fixed public information set IP (θ). However since for any information set. How-

ever since P (θ) = P ∗(Q(θ), Lθ, θ) can fail for at most a conditionally-zero-measure

subset of any information set, the set of all such θ has zero measure in Θ.

For the converse direction, we want to show that if R(a, θ) = P ∗(a, Lθ, θ) and

Q,P,M satisfy commitment and market clearing then (Q,P ) are equilibrium out-

comes given M . Thus we need to check that X(P (θ)|M(P (θ)), IP (θ), θ) = 0 for all

θ. Fix a public information set IP (θ). The first part of the above proof for the other
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direction continues to hold: it must be that s 7→ x∗i (s) ≡ xi(P (θ)|Q(θ), s, IP (θ)) is

constant, otherwise P could not be constant on IP (θ). But the second part of the

above proof tells us that for all but a conditionally-zero-measure subset of IP (θ), we

have Vi(Q(θ), θ′, x∗, P (θ)) > Vi(Q(θ), θ′, x′, P (θ)) for all x′ 6= x∗. Let θ′′ be a state

such that this inequality holds. Then xi(P (θ)|Q(θ), s, IP (θ)) = xi(P (θ)|Q(θ), s, Lθ′′)

for all s, so markets clear in state θ if and only if P = P ∗(a, Lθ, θ).

Continuity of the invariant representation R(a, θ) = P ∗(a, Lθ, θ) is guaranteed by

continuity of θ 7→ h(·|θ) and continuity of Vi.

F.3 Noisy REE in asset markets

This section illustrates a market in which restrictions on P derived without reference

to an invariant representation are then used to identify the invariant representation.

We do this in the canonical noisy REE model of Grossman and Stiglitz (1980) and

Hellwig (1980) by extending results from Breon-Drish (2015) to a setting with feed-

back effects.

The setting is as follows. There is a single asset that pays an ex-post dividend of

π(a, ω), where ω ∈ Ω is referred to as the payoff-relevant state. We assume that π

is continuous and is affine in ω for all a; π(a, ω) = βa0 + βa1ω. Each investor observes

an additive signal si = ω + εi, where εi ∼ N(0, σ2
i ), where σ2

i lies in a bounded set.

The supply shock is a random variable z taking values in Z. We assume that z has

a truncated normal distribution. That is, z is the restriction of a normal random

variable ẑ ∼ N(0, σ2
Z) to the interval [b1, b2], with −∞ ≤ b1 ≤ 0 ≤ b2 ≤ ∞ (note that

this assumption accommodates un-truncated supply shocks as well). For simplicity,

let b1 = −b2; this does not affect the results. The state θ consists of both the payoff-

relevant state ω and the supply shock z.

There are are a continuum of investors i ∈ [0, 1], each with CARA utility u(w) =

− exp
{
− 1
τi
w
}

. The ex-post payoff to an investor who purchases x units of the asset

at price p when the principal takes action a is given by − exp
{
− 1
τi
x(π (a, ω)− p)

}
,

where τi lies in some bounded set. We assume that the distribution of private signals
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in the population is uniquely determined by the state ω (this is the usual “continuum

law of large numbers” convention). Let xi(p|a, I, si) be the demand of investor i when

the price is p, the anticipated principal action is a, and the public information is that

(ω, z) ∈ I, and i’s private signal is si. Aggregate demand is X(p|a, I, ω).

We generalize the standard noisy REE definition. Define a public information

function as λ : P → 2(Ω,Z). Given a pair (P, λ) of price and public information

functions, say that markets clear if X(P (ω, z)|M(P (ω, z)), λ(P (ω, z)), ω) = z for all

(ω, z). An equilibrium given M consists of a pair (P, λ) such that

1. Markets clear given (P, λ).

2. Information is consistent: there exists a price function P ′ such that markets

clear given (P, λ), and such that λ(p) = {(ω, z) : P ′(ω, z) = p}

The standard definition of REE would require that P ′ = P , meaning public informa-

tion is consistent with the equilibrium price function. If this holds then we say that

P characterizes a fully consistent equilibrium. We will show in the end that under

the constraint of equilibrium uniqueness, it is without loss of generality to restrict

attention to fully consistent equilibria. However it is precisely because of the concern

with equilibrium multiplicity that we introduce the more general notion. To see why,

fix the decision rule M and suppose that (P, λ) is a fully consistent equilibrium. Re-

call that we interpret this market as one in which investors submit limit orders to a

market maker. Suppose there exists another price function P̂ 6= P such that markets

clear given (P̂ , λ). Then one may well be concerned that for a realized state (ω, z)

the market maker sets the price P̂ (ω, z), rather than P (ω, z). If there are multiple

equilibria in this sense, then moving between them requires no change in the behavior

of market participants, simply a change in the selection of the market clearing price

by the market maker. We want a notion of equilibrium uniqueness which rules out

this type of multiplicity, hence our more general equilibrium definition.

On the other hand, the search for truly unique implementation is hopeless in the

noisy REE model studied here, even restricting to fully consistent equilibria, since
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there are multiple (meaningfully different) fully consistent equilibria even when there

is no policy feedback, that is, fixing the principal’s action (Pálvölgyi and Venter,

2015). This is because even for a fixed principal action, there may be multiple fully

consistent price functions (which of course correspond to different public information

functions). We therefore need to consider a weaker uniqueness notion.

What we really want to rule out is multiplicity arising from the endogeneity of the

principal’s action. We therefore in this context say that M is robust to multiplicity if

for any equilibrium (P, λ) given, there is no other price function P̂ such that (P̂ , λ)

is also an equilibrium. In other words, we fix the public information function, and

require uniqueness of equilibrium price functions. We show (Proposition 16) that any

P which is uniquely implementable according to this notion must characterize a fully

consistent equilibrium.

We turn now to establishing existence of a suitable invariant representation. The

complication in this setting is that there is no easy way to narrow down the space

of possible public information sets that can be revealed by the price. We therefore

analyse directly the problem of characterizing what equilibria can be induced with a

decision rule M ∈ M that is robust to multiplicity. To do this, we first need some

preliminary results.

Lemma 14. For and I ⊆ Ω × Z, p ∈ P , and a ∈ A, the function ω 7→ X(p|a, I, ω)

is Lipschitz continuous.

Proof. First note that si 7→ xi(p|a, I, si) is Lipschitz continuous since Ω is bounded

and si = ω+εi for a normally distributed εi. Increasing ω by δ has the same effect on

aggregate demand as increasing si by δ for all i. Then ω 7→ X(p|a, I, ω) is Lipschitz

continuous since σi and τi are bounded in the population.

Note that since the distribution of signals in the population is uniquely determined

by ω (following the usual “continuum law of large numbers” convention) it cannot be

that any public information set I contains states (ω′, z′) and (ω′, z′′) with z′′ 6= z′,
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since the aggregate demand would not be the same in both cases. Therefore, the

distribution of ω conditional on I cannot have atoms.

Lemma 15. For any p ∈ P and a ∈ A, let I be a set satisfying I ⊆ {(ω, z) :

X(p|a, I, ω) = z}. The distribution of ω conditional on I is absolutely continuous.

Proof. First, note if (ω′′, z′′) and (ω′, z′) are elements of I, with ω′′ > ω′ then it must

be that z′′ > z′. This follows from the fact that aggregate demand is strictly increasing

in ω and strictly decreasing in p.

The function ω 7→ X(p|a, I, ω) is Lipschitz continuous by Lemma 14. So for any

κ > 0 there exists δ > 0 such that for any (ω′′, z′′), (ω′, z′) ∈ I, we have |ω′′ − ω′| < δ

implies |z′′ − z′| < κ. In other words, there is a uniform bound on the “slope” of I

in Ω × Z space. Since the prior distribution on Ω × Z is absolutely continuous, this

implies the desired result.

Lemma 16. Let I satisfy I ⊆ {(ω, z) : X(p|a, I, ω) = z} for some p, a. Then there

exists k > 0 and ` such that I ⊆ {(ω, z) : k · ω − z = `}

Proof. Define the random variable Ṽ a := π(a, θ) = βa0 + βa1θ. Then define S̃ai :=

βa1si + βa0 = Ṽ a + βa1εi. Thus conditional on knowing the principal’s action, investor

i’s observation of si is equivalent to observing a signal S̃ai which is equal to the true

dividend Ṽ a plus normal random noise, where the variance of the noise term depends

on a; it is given by σ2
ai = (βa1 )2σ2

i . The results then follow from the proof of Proposition

2.2 in Breon-Drish (2015) (Online Appendix). The proposition in Breon-Drish (2015)

pertains to the information sets revealed by equilibrium price functions which are

continuous and satisfy a differentiability assumption. However, for the relevant direc-

tion of the proof, these conditions are only needed to guarantee that the distribution

of Ṽ a conditional on I has a density, which is implied here by Lemma 15.

In words, Lemma 16 says that any public information set, either one revealed

on-path by the price or by the off-path inference function, must lie in a linear subset

of Ω × Z. In other words, and such I must be a subset of some set of the form
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{(ω, z) : k · ω − z = `} for some k > 0 and `. The following proposition identifies

exactly which hyperplanes the public information sets can lie in.

Proposition 15. Assume CARA utility, π affine in θ and continuous, additive normal

signal structure and truncated-normally distributed supply shocks. Then there exists

a unique (up to positive transformations) function L∗ : Ω×Z ×A → R defined by

L∗(ω, z|a) =

(
1

βa1

∫
i

τi
σ2
i

di

)
· ω − z (7)

such that for any M , if I is the public information revealed at price p (in which case

I ⊆ {(ω, z) : X(p|a, I, ω) = z}) then L∗(ω′′, z′′|M(p)) = L∗(ω′, z′|M(p)) for almost

all (ω′′, z′′), (ω′, z′) ∈ I

Proof. Given Lemma 16, we just need to identify what the coefficients on the linear

statistic are. Fix M , and let LM : Ω × Z × A → R be the equilibrium statistic

in a generalized linear equilibrium in which the price reveals exactly a hyperplane.

Define the random variable Ṽ a := π(a, ω) = βa0 +βa1ω. Then define S̃ai := βa1si +βa0 =

Ṽ a+βa1εi. Thus conditional on knowing the principal’s action, investor i’s observation

of si is equivalent to observing a signal S̃ai which is equal to the true dividend Ṽ a plus

normal random noise, where the variance of the noise term depends on a; it is given

by σ2
ai = (βa1 )2σ2

i . Let L̃a be the random variable LM(ω, z, a).

We first fix the principal’s action at a, and generalize Breon-Drish (2015) Proposi-

tion 2.1 to allow for supply shocks with a truncated normal distribution. We will there-

fore suppress dependence of S̃ai , Ṽ
a, L̃a on the action a for the time being. Abusing

notation, write the statistic L in terns of v, rather than ω; that is, L(v, z|a) = αv− z,

suppressing the dependence on M .50 For fixed a, the truncation is the only difference

between the current setting and that of Breon-Drish (2015) Proposition 2.1. By the

same steps as the proof for Proposition 2.1 in Breon-Drish (2015) Online Appendix,

50This abuse of notation is done to match the notation of Breon-Drish (2015). Note that in that
paper “a” is used in place of α to denote the slope of the equilibrium statistic. The reader examining
Breon-Drish (2015) should not confuse this with the notation for the principal action used in the
current paper.
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we can show that the conditional distribution of Ṽ a conditional on S̃ai = si and L̃a = `

is given by

dFṼ |S̃,L̃(v|si, `) =
1[`− αv ∈ (−b, b)] exp

{(
1
σ2
ai
si + α

σ2
Z
`
)
v − 1

2

(
1
σ2
ai

+ α2

σ2
Z

)
v2
}
dFṼ (v)∫ `+b

α
`−b
α

exp
{(

1
σ2
ai
si + α

σ2
Z
`
)
x− 1

2

(
1
σ2
ai

+ α2

σ2
Z

)
x2
}
dFṼ (x)

,

(8)

where 1[·] is the indicator function. This is not in the exponential family of distri-

butions, as defined in Breon-Drish (2015) Assumption 10. Nonetheless, it will have

similar properties. We can write the conditional distribution in (8) as

1[`− αv ∈ (−b, b)] exp
{
L̂(si, `)v − g

(
L̂(si, `);α, `

)}
dH(v;α),

where L̂(s, `) =
(

1
σ2
ai
si + α

σ2
Z
`
)

and

gi(L̂;α, `) = log

(∫ `+b
α

`−b
α

exp

{(
1

σ2
ai

si +
α

σ2
Z

`

)
x− 1

2

(
1

σ2
ai

+
α2

σ2
Z

)
x2

}
dFṼ (x)

)

dHi(v;α) = exp

{
−1

2

(
1

σ2
ai

+
α2

σ2
Z

)
v2

}
dFṼ (v)

This has the following important implication (essentially the same as Lemma A6

in Breon-Drish (2015)). The conditional distribution integrates to 1,

i.e.
∫ `+b

α
`−b
α

exp
{
L̂(si, `)v − g

(
L̂(si, `);α, `

)}
dH(v;α) = 1, so

∫ `+b
α

`−b
α

exp
{
L̂(si, `)v

}
dH(v;α) =

exp
{
g
(
L̂(si, `);α, `

)}
. As a result, for any t ∈ R we have

E
[
exp{tṼ }|s, `

]
= exp

{
g
(
t+ L̂(si, `);α, `

)
− g

(
L̂(si, `);α, `

)}
.

The remainder of the proof for the fixed-action case proceeds as in Breon-Drish (2015)

Proposition 2.1. In particular, this shows that in any generalized linear equilibrium

with fixed action a, we have α =
∫
i

τi
σ2
ai

di. Since v = βa0 + βa1ω and σ2
ai = (βa1 )2σ2

i we

have L∗(ω, z|a) = βa0
∫
i

τi
σ2
ai

di +

(
1
βa1

∫
i

τi
σ2
ai

di

)
· ω − z Since information revelation is
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characterized by the level sets of L∗, we can ignore the first term.

We now show that the result holds under feedback as well. Given M , the investor

knows which action the principal will take conditional on the price. In a generalized

linear equilibrium, the investor’s demand is therefore determined by maximizing util-

ity given that the price is p, the action is M(p), the observed signal is S̃ai , and the

extended state is in {(ω, z) : LM(ω, a|a) = `} for the value of ` corresponding to price

level p. The remaining question is which LM(·|a) could constitute equilibrium statis-

tics given action a and decision rule M . The first part of the proof shows that if the

principal’s action is fixed at a then there is a unique equilibrium statistic L∗(ω, z|a).

Since all investors know the principal’s action once they observe the price, this L∗

must be the equilibrium statistic, regardless of M .

We now wish to use these properties, in particular Lemma 16, to identify features

of equilibrium. Proposition 15 identifies the hyperplane to which each information

set belongs. Following Breon-Drish (2015), we refer to these hyperplanes as linear

statistics. So in other words, the public information will always reveal at least the

associated linear statistic. In fact, under robustness to multiplicity and M ∈M, the

equilibrium price function will reveal exactly the linear statistic, and no more.

Proposition 16. Maintain the assumptions of Proposition 15. If M ∈ M is robust

to multiplicity then (up to zero-measure violations) the level sets of the equilibrium

price function P̃ are given by {(ω, z) : L∗(ω, z|M(p)) = `} for some `, where L∗ is

given by (7). Moreover, P̃ characterizes a fully consistent equilibrium.

Proof. Proposition 15 says that the equilibrium price must reveal at least the linear

statistic. We want to show that the price can reveal no more than this. For p ∈

P̃ (Ω,Z) let l∗(p) be the linear statistic revealed by p. Suppose that I(p) := {(ω, z) :

P̃ (ω, z) = p} 6= l∗(p), so that the price reveals more than the linear statistic. We

show that in this case there will be multiplicity. This follows from the fact that the

set of states {(ω, z) : X(p|M(p), I(p), ω) = z} is the entire linear statistic l∗(p).

This follows from the proof of Lemma 15 and Proposition 2.2 in Breon-Drish (2015)
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(Online appendix), which shows that individual demands will be linear in signals for

any price (so aggregate demand is linear in the state). This implies also that P̃ is a

fully consistent equilibrium.

Let P̃ be the set of price functions P such that every level set of P given by

{(ω, z) : L∗(ω, z|M(p)) = `} for some `. We refer to P̃ as the price functions with

non-intersecting level sets.

The idea behind Proposition 16 is illustrated in Figure 6. Figure 6a illustrates

a situation in which the level set of the price function at p = 4 is a strict subset

of the linear statistic L∗(ω, z|M(4)). The dotted line is the segment of the linear

statistic which is omitted from the level set. Since conditioning on the truncated level

set induces higher posterior beliefs about ω than conditioning on the entire linear

statistic, the price in these states would be lower than in an equilibrium in which the

action was fixed at M(4) for all prices. This would imply that there does not exist

an invariant representation. The representation is saved, however, by the uniqueness

requirement. In the situation depicted in Figure 6a, we show that there are additional

equilibria in which the action M(4) is taken for states on the dotted line segment,

violating the uniqueness requirement.

z̄

z Ω

p = 1 p = 2 p = 3 p = 4

p = 5

p = 6

(a) Multiplicity

z̄

z Ω

p = 2 p = 1 p = 3 p = 4

p = 5

(b) No multiplicity

z̄z

Ω

p = 1 p = 2 p = 3 p = 4

(c) Fixed action a ∈ A

Figure 6: Linear statistics

From (7) we can see how the principal’s action affects information aggregation;

the higher is βa1 , i.e. the more sensitive the asset value is to the state, the smaller the

coefficient on θ in the equilibrium statistic. As a result, the price is less informative

about the state. This is because when βa1 is high, each trader’s private signal is less
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informative about the asset value. As a result, traders place less weight on their private

information relative to the information revealed by the price. The linear statistics for

a fixed action a ∈ A are pictured in Figure 6c. The slope of the linear statistics is

− 1
βa1

∫
i
τi
σ2
i
di, which again illustrates that the price reveals more precise information

about ω the lower is βa1 . The proof of Proposition 15 also yields an expression for

R(a, ω, z), although for the current purposes it is sufficient to note simply that such

a function exists and is strictly increasing (with the product partial order on Ω×Z).

Define L(a, p) := {(ω, z) : X(p|a, L∗(ω, z|a), ω) = z}. Note that by definition,

L(a, p) = {(ω, a) : L∗(ω, z|a) = `} for some `.

Corollary 4. Assume CARA utility, π affine in ω, additive normal signal structure

and truncated-normally distributed supply shocks. Then the market has unique level

sets represented by L. As a result, the market admits an a.e. invariant representation

given (W∗, P̃). Moreover, (ω, z) 7→ R(a, ω, z) is strictly increasing for all a.

There are several differences between the environment of Proposition 15 and that

of Breon-Drish (2015) Proposition 2.1. Most importantly, the current setting features

a feedback effect, whereas asset returns follow a fixed distribution in Breon-Drish

(2015).51 The approach here is similar to Siemroth (2019). Aside from the fact that in

Siemroth (2019) the principal cannot commit, that paper also assumes that the asset

value is additively separable in the state and the principal’s action. This is more than

a technical assumption; it implies, as the author demonstrates, that the information

revealed by the price is the same in all equilibria, regardless of the principal’s actions.

Siemroth (2019) also restricts attention to equilibria in which the price function is

continuous (not to be confused with continuity of the principal’s decision rule). This is

a substantive assumption, as it implies that the equilibrium, when it exists, is unique.

We are interested precisely in characterizing uniquely implementable outcomes, so

51Additionally, the signal σi observed by each investor is given by the state plus noise, as opposed
to the asset return plus noise as in Breon-Drish (2015). This is immediately handled by a suitable
change of variables, given the assumption that θ 7→ π(a, θ) is affine for all a. We allow here for the
supply shock to follow a truncated normal distribution, where Breon-Drish (2015) considers only
the un-truncated distribution.
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such an assumption on the (endogenous) price function would be inappropriate.

G Further applications

G.1 Variable-volume carbon credits

Consider the problem of the emissions regulator discussed in the introduction. Such

a policy is referred to by Karp and Traeger (2021) as a “smart cap”.52 The socially

optimal level of emissions is determined by the marginal cost to firms of reducing their

emissions, known as the abatement cost, and the marginal social benefit of reducing

emissions. Assume that the regulator knows the social benefit of reducing emissions,

but does not know firms’ abatement costs.53 Firms have private information about

these costs.

Let q be the quantity of “clean air” produced by society. The societal benefit

of clean air is given by B(q). The social cost of producing q units of clean air is

unknown to the regulator. This cost depends on the cost to emissions-producing

firms of reducing their emissions. We parameterize the cost by C(q, θ), where θ is

unknown to the regulator.

Under a variable-volume credits policy, the regulator issues a unit mass of credits.

The regulator’s action space A = [0, 1] is the per-credit emissions volume allowance.

If the per-credit volume allowance is a, the quantity of clean air is given by 1 − a.

The regulator’s decision rule specifies the per-credit volume as a function of the price

for credits.

There are a continuum of firms i ∈ [0, 1]. Each firm observes its own cost type

si. The distribution of costs in population is Fθ, where θ ∈ [0, 1] and θ 7→ Fθ is

increasing in the FOSD order. A firm’s payoff is given by u(a ·x, si)− p ·x, where a is

per-credit volume and x is the number of credits purchased. Assume u is continuous;

strictly increasing and strictly concave in its first argument; and strictly decreasing

52Karp and Traeger (2021) show that a smart cap can implement the regulator’s first best, but
do not consider uniqueness and manipulation constraints.

53In reality, there may also be uncertainty about the social benefit of reducing emissions.
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and convex in its second argument. Notice that this is a private-values setting; a firm’s

payoff does not depend directly on the abatement costs of others. Credits are traded

in a competitive market. Denote the firm’s demand by

X(p, a, si) = arg max
x

u(a · x, si)− p · x.

Demands are unique under the maintained assumptions on u, and strictly decreasing

in p. Given an action function Q : Θ 7→ A, it must be that the equilibrium in state θ

is the unique value satisfying

∫
θ

X(p,Q(θ), s)dFθ(s) = Q(θ) (9)

Thus condition (9) implicitly defines an invariant representation for the credits mar-

ket, where the market-clearing function R(a, θ) is continuous, strictly decreasing in

its first argument, and strictly increasing in its second.

The regulator’s first-best action function is given by

Q∗(θ) = arg max
a

B(1− a)− C(1− a, θ).

Assume that θ 7→ C1(q, θ) is continuous and strictly increasing. Then the first-best

cannot be implemented by setting prices or quantities alone, since Q∗ is strictly in-

creasing. However, since Q∗ is continuous and the associated price function P ∗ is

strictly increasing, the first-best can be implemented uniquely by a decision rule that

is robust to manipulation, by Theorem 2. The implementing decision rule in this case

is continuous and strictly increasing.

In fact, since the first best price function P ∗ fully reveals the state and the first-

best is CUI, the first-best here can also be implemented even if the principal lacks

commitment power. Formally, M(p) = Q∗(P ∗−1(p)). In other words, in equilibrium

the principal learns the state perfectly and does not need to commit to taking an
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ex-post sub-optimal action in order to induce this equilibrium.

G.2 Moving against the market

In this section, we explore the distinctive features of a set of applications in which the

principal would like to induce a decreasing price. As before, θ 7→ R(a, θ) is increasing.

These are therefore situations in which the principal is working to move prices against

the market. The following are two such instances.

Monetary policy in a crisis

During the financial crisis of 2008 and the Covid-19 recession of 2020, central banks

moved aggressively to lower interest rates. In this application, the unknown state is

the severity of the liquidity crisis faced by firms and the market price is the interest

rate. The action is the size of asset purchases made by the central bank through open

market operations. The central bank’s objective is to implement an interest rate that

is decreasing in the state via its open market operations.

Grain reserves

Many developing countries manage grain reserves as a tool for stabilizing grain

prices and responding to food shortages. The state here is the size of a demand

or supply shock, the price is the grain price, and the action is the size of grain

purchases/sales. Depending on the nature of the crisis and the structure of the grain

market, the government may wish to implement a decreasing price. If the government

has limited capacity to make direct transfers to households it may wish to implement

transfers by lowering the grain price when there is a severe crisis. For example, suppose

that grain is a Giffen good. If there is an employment crisis outside of agriculture the

price of grain may rise, absent government intervention.54 In this case, the government

may wish to subsidize non-agricultural households by lowering the grain price.

Throughout this section, we maintain the assumptions that A = [a, ā] ∈ R and

that θ 7→ R(a, θ) is strictly increasing for all a, and that a 7→ R(a, θ) is strictly

54There is empirical evidence that food staples are Giffen goods for extremely poor households
(Jensen and Miller, 2008).

77



decreasing for all θ (that this function is decreasing as opposed to increasing is simply a

normalization). A decreasing price function is possible if and only if R(a, θ) > R(ā, θ̄).

Figure 7 depicts such an environment.

state

price

R(a, ·)

R(ā, ·)

Figure 7: Decreasing price function

The following observation shows that implementing an increasing price function

in this setting is easy.

Lemma 17. If a 7→ R(a, θ) is strictly decreasing for all θ then any strictly increasing

M ∈ M induces an increasing and continuous price function as the unique equilib-

rium.

Proof. An equilibrium exists for any increasing M by Tarski’s fixed point theorem.

That the price function will be increasing follows from the fact that a 7→ R(a, θ) is

decreasing and θ 7→ R(a, θ) is increasing. If P is increasing and M is increasing, there

will be no equilibrium involving prices above P (θ̄) or below P (θ).

We show that M can have no discontinuities on [P (θ), P (θ̄)], which implies that

P is continuous. Suppose, towards a contradiction that there is a non-empty set D of

discontinuities in this region, and let p′ = inf D. By definition ofM, p′ ∈ (P (θ), P (θ̄)).

Let a′ = limp↗p′M(p). For any p ∈ (P (θ, p′) and any a ∈ (M(P (θ), a′) there exists

θ ∈ (θ, θ̄) such that R(a, θ) = p. This follows from the fact that a 7→ R(a, θ) is

decreasing. Then for any p ∈ (P (θ), p′) there exists θ such that R(M(p), θ) = p, since

M is increasing and continuous on (P (θ, p′). This contradicts the definition of p′.
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An equilibrium exists for any increasing M by Tarski’s fixed point theorem. That

the price function is increasing follows from the fact that a 7→ R(a, θ) is decreasing

and θ 7→ R(a, θ) is increasing. If P is increasing and M is increasing, there will be no

equilibrium involving prices above P (θ̄) or below P (θ). Moreover, we show that M

cannot have a discontinuity on [P (θ), P (θ̄)], which implies that P is continuous.

Decreasing price functions are more interesting in this setting. Non-monotonicity

of M will be necessary to robustly implement a decreasing price.

Lemma 18. Assume a 7→ R(a, θ) is strictly decreasing for all θ, and let P be a

decreasing price function. If M ∈M uniquely implements P then

i. M(p) is decreasing and continuous on an open interval containing (P (θ̄), P (θ)),

ii. M has discontinuities in (P (θ), R(a, θ)] and (R(ā, θ̄), P (θ̄)].

iii. There exist p′′ > p′ > P (θ) such that M(p′′) > M(p′).

iv. There exist p′ < p′′ < P (θ̄) such that M(p′′) > M(p′).

Proof. Condition i is immediate. For ii, first note that for p ∈ (R(a, θ), R(a, θ̄)) it

must be that M(p) > a; if not then R(M(p), θ) = p for some θ ∈ (θ, θ̄). Suppose there

is no discontinuity on (P (θ), R(a, θ)]. Then M must be decreasing over this domain to

prevent multiplicity, and limp↘R(a,θM(p) = a. But for p ∈ (R(a, θ), R(a, θ̄)) it must

be that M(p) > a, so there must be a discontinuity. A symmetric argument applies

to (R(ā, θ̄), P (ā)]

Conditions iii and iv follow from a similar argument. Define p̄ by

p̄ = sup{p : M is decreasing on (P (θ̄), p̄)}. The argument above implies that p̄ ≤

R(a, θ). This implies iii. A symmetric argument implies iv.

Lemma 18 shows that discontinuous and non-monotone M is necessary to imple-

ment a decreasing price. The intuition comes from the fact that the government is

attempting to move against the market. Suppose the principal uses a strictly decreas-

ing decision rule. If the lower bound a on the action is reached at some price p, then

the principal will no longer have the capacity to move against the market for prices
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below p. Thus for such prices, the market forces generating an increasing price will

dominate, and there will be multiple equilibria.

More formally, there are only two ways to guarantee that θM(p) = ∅, i.e. that

there are no equilibria with price p. Either M must specify an action that is too high,

meaning R(M(p), θ̄) < p, or too low, so that R(M(p), θ) > p. If neither of these holds,

there will be some θ such that R(M(p), θ) = p, by continuity of R. The only way to

ensure that there are no equilibria with prices in [R(a, θ), R(a, θ̄)] is to take a high

enough action for such prices; it must be that R(M(p), θ̄) < p for all such prices.

At the same time, M must be decreasing on (P (θ̄), P (θ)) in order to implement a

decreasing P . This tension is what necessitates discontinuities and non-monotonicities

in M .

Lemma 18 is important in applications because it highlights the danger of artifi-

cially restricting the class of permissible decision rules. If, for example, one restricts

attention to monotone decision rules, it is not possible to uniquely implement a de-

creasing price. It is nonetheless common practice in the literature to focus on mono-

tone, or even linear, decision rules (see for example Bernanke and Woodford (1997)).

Most papers that make this type of linearity assumption do so in models where the

action space is unbounded. The fact that the action space is bounded here is an im-

portant driver of the non-monotonicity result in Lemma 18. However in reality there

are often bounds on the available set of actions.55 In the grain reserves example, the

government cannot sell more grain than it has in reserve. Similarly, central banks in

developing countries cannot make unlimited asset purchases without creating signifi-

cant balance sheet risks (Crowley, 2015). Lemma 18 shows that such restrictions on

the feasible actions can interact in surprising ways with conditions on the decision

rules used to gain tractability. Our general framework allows us to avoid the need to

impose such conditions.

55Notice that the conclusion of Lemma 18 does not depend on how “tight” the bounds are; non-
monotone decision rules are necessary even if the range of admissible actions is arbitrarily large.
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