Advanced Microeconomics III

Francisco Poggi

Information about the course

- Lectures: Mondays and Tuesdays, 10:15 AM.
- Exercise session: with Chang Liu on Tuesdays, 12:00 PM.
- Office hours:
- Mondays 1:30 PM in my office (310).
- Send me an email in advance.
- Problem Sets:
- Due on Mondays.
- Hand in via email to Chang.
- You can work in groups of up to 3 students. Only one submission is required per group (clearly indicating group members).
- Final exam: June 5th.

Course material

- Slides will be hosted on my website:
franciscopoggi.com/courses/microlll
- Main Textbook: "Microeconomic Theory" by Mas-Colell, Whinston, and Green, Oxford University Press, 1995 (MWG).
- The course covers Ch. 13, Ch. 14, and Ch. 23 D-F.
- Also: "The Theory of Incentives: The Principal-Agent Model" by Laffont and Martimore, Princeton University Press, 2002.

Course plan

Week 1 (April 17) Adverse Selection (Akerlof)
Week 2 (April 24) Signaling (Spence)
Week 3 (May 1) Competitive Screening (Rothchild-Stiglitz)
Week 4 (May 8) Moral Hazard
Week 5 (May 15) Bayesian Implementation/Envelope Theorem
Week 6 (May 22) Auctions and efficient Mechanisms (3 lectures)
Week 7 (May 30) Revision week

Overview

(1) Introduction to Information Economics

2 Akerlof's Market for Lemons

- Setup
- Competitive Equilibria
- Equilibrium Multiplicity
- A game-theoretic approach
- Experimental Evidence
- Information and Trade

Information economics

- What is "information"?
- Informally: the ability to exclude some states of the world.
- What is "asymmetric information"?
- Asymmetric information is present in many economic relationships
- Trade of used goods or novel goods
- Labour markets
- Financial markets
- Provision of public goods
- Insurance
- Expert advise
- What is "economics of information"?
- economics of markets with asymmetric information, i.e., welfare and distributional aspects of equilibria.

Overview

(1) Introduction to Information Economics

(2) Akerlof's Market for Lemons

- Setup
- Competitive Equilibria
- Equilibrium Multiplicity
- A game-theoretic approach
- Experimental Evidence
- Information and Trade

Akerlof's market for lemons

- QJE (1970).
- Around 40k citations.
- Nobel Prize (2001) with Spence and Stiglitz.
- Before QJE, the paper was rejected by 3 top journals.
- AER: trivial.
- JPE: wrong.
- REStud: trivial.

Overview

(1) Introduction to Information Economics

(2) Akerlof's Market for Lemons

- Setup
- Competitive Equilibria
- Equilibrium Multiplicity
- A game-theoretic approach
- Experimental Evidence
- Information and Trade

Akerlof's market for lemons

- There is a continuum of sellers (measure N) and a continuum of buyers (measure larger than N).
- Each seller owns a "car" of quality $\theta \in[\underline{\theta}, \bar{\theta}]$, where $F(\theta)$ represents the proportion of sellers with quality below θ.
- Buyers and sellers have quasiliner preferences:
- The payoff of a buyer who acquires a car of quality θ at price p :

$$
\theta-p
$$

- The payoff of a seller parting with a car of quality θ at price p is:

$$
p-r(\theta)
$$

- $r(\theta)$ can be thought of as an opportunity cost.

Efficient allocation

Let $\Theta \subset[\underline{\theta}, \bar{\theta}]$ be the set of car qualities that are traded.

$$
\text { Gains from trade }=\int_{\underline{\theta}}^{\bar{\theta}} 1_{\{\theta \in \Theta\}} \cdot[\theta-r(\theta)] \cdot N d F(\theta)
$$

- The efficient allocation Θ^{*} maximizes the gains from trade.
- Solution:

$$
\begin{gathered}
\theta \in \Theta^{*} \quad \Leftrightarrow \quad \theta \geq r(\theta) \\
\Theta^{*}=\{\theta \in[\underline{\theta}, \bar{\theta}]: \theta \geq r(\theta)\}
\end{gathered}
$$

Efficient allocation

Benchmark: symmetric information

- Suppose car quality is observable. There can be different prices for different qualities of cars.
- We denote $\hat{p}(\theta)$ the price function.
- In a Competitive equilibrium, $\hat{p}(\theta)$ is such that quantity demanded and supplied are equal for all car qualities.

Demand for car of quality $\theta=\left\{\begin{array}{cll}0 & \text { if } & p>\theta \\ {\left[0, N^{\prime}\right]} & \text { if } & p=\theta \\ N^{\prime} & \text { if } & p<\theta\end{array}\right.$
Supply for car of quality $\theta=\left\{\begin{array}{cll}N & \text { if } & p>r(\theta) \\ {[0, N]} & \text { if } & p=r(\theta) \\ 0 & \text { if } & p<r(\theta)\end{array}\right.$

Benchmark: symmetric information

- For qualities $\theta \in \Theta^{*}$:

$$
\theta>r(\theta) \quad \Rightarrow \quad \hat{p}(\theta)=\theta \text { and } \hat{Q}(\theta)=N
$$

- For qualities $\theta \notin \Theta^{*}$:

$$
\theta<r(\theta) \quad \Rightarrow \quad \hat{p}(\theta) \in(\theta, r(\theta)) \text { and } \hat{Q}(\theta)=0
$$

Observation

With symmetric information the competitive equilibrium is efficient.

Overview

(1) Introduction to Information Economics

(2) Akerlof's Market for Lemons

- Setup
- Competitive Equilibria
- Equilibrium Multiplicity
- A game-theoretic approach
- Experimental Evidence
- Information and Trade

Asymmetric information: competitive equilibrium

- Since car quality is not observable by the buyers, all car qualities should have the same price.
- A competitive equilibrium is a price \hat{p} and a set $\hat{\Theta} \subseteq[\underline{\theta}, \bar{\theta}]$ such that

$$
\begin{aligned}
\hat{p} & =E[\theta \mid \theta \in \hat{\Theta}] \\
\hat{\Theta} & =\{\theta: r(\theta) \leq \hat{p}\}
\end{aligned}
$$

- or $\hat{\Theta}=\emptyset$ and $\hat{p} \leq \max _{\theta \in[\underline{\theta}, \bar{\theta}]} r(\theta)$.

Example

Assume $r(\theta)=\bar{r}$ and $F(\bar{r}) \in(0,1)$.

- Note that $\Theta^{*}=\{\theta \in[\underline{\theta}, \bar{\theta}]: \theta \geq \bar{r}\}$.
- Constructing equilibria with $\hat{p} \geq \bar{r}$:
- Then, by equilibrium condition 2 ,

$$
\hat{\Theta}=\{\theta \in[\underline{\theta}, \bar{\theta}]: r(\theta) \leq \hat{p}\}=[\underline{\theta}, \bar{\theta}]
$$

- By condition 1,

$$
\hat{p}=E[\theta \mid \theta \in \hat{\Theta}]=E[\theta]
$$

- Equilibrium candidate: $\hat{p}=E[\theta]$ and $\hat{\Theta}=[\underline{\theta}, \bar{\theta}]$.
- Equilibrium when $E[\theta]>\bar{r}$.
- This is inefficient.

Example

- Constructing equilibria with $\hat{p}<\bar{r}$:
- By condition 2,

$$
\Theta=\emptyset
$$

- Our candidate is $\hat{p}=E[\theta]$ and $\hat{\Theta}=\emptyset$.
- Equilibrium when $E[\theta]<\bar{r}$. This is also inefficient.

Example

Adverse selection

- In the previous example:
- Willingness to sell r is independent of the quality.
- Either every or no seller wants to sell.
- But the efficient allocation depends on the quality.
- Adverse selection occurs when $r(\theta)$ is increasing in θ.
- For any price, only the relatively worse cars $\left(\theta \leq r^{-1}(p)\right)$ are going to be offered.
- Market may completely fail even when it is efficient that all cars are traded.

Possibility of market breakdown

Existence of CE with no market breakdown

Assumptions:

1. Negative Selection: r is strictly increasing.
2. No atoms: F is continuous.
3. No market breakdown: There exists a price such that $E[\theta \mid r(\theta) \leq p]>p$.

Proposition
Assume 1-3. Then a competitive equilibrium with some trade exists.

Existence of CE with no market breakdown

Existence of CE with market breakdown

Assumptions:

3'. Market breakdown: $E[\theta \mid r(\theta) \leq p]<p$ for all p.

Proposition
Assume 1, 2 and 3'. Then a competitive equilibrium with no trade exists. Moreover, no equilibrium with a positive mass of trade exists.

Parametric Examples

- Example 1: constant opportunity cost.
- F uniform on $[0,1]$.
- $r(\theta)=\bar{r}$.
- For which \bar{r} is the CE efficient?
- Example 2: linear opportunity cost.
- F uniform on $[0,1]$.
- $r(\theta)=\alpha \cdot \theta$.
- For which α is the CE efficient?

Overview

(1) Introduction to Information Economics

(2) Akerlof's Market for Lemons

- Setup
- Competitive Equilibria
- Equilibrium Multiplicity
- A game-theoretic approach
- Experimental Evidence
- Information and Trade

Equilibrium multiplicity

Equilibrium multiplicity

- When there are multiple equilibria, these can be Pareto ranked:
- Buyers make zero expected profits in all equilibria.
- in 'higher' equilibria more sellers sell, and those who sell make higher profits.
- Are some of these equilibria more likely than others?

Overview

(1) Introduction to Information Economics

(2) Akerlof's Market for Lemons

- Setup
- Competitive Equilibria
- Equilibrium Multiplicity
- A game-theoretic approach
- Experimental Evidence
- Information and Trade

Game-theoretic approach

- Same underlying structure with F and $r(\cdot)$ commonly known.
- Three players: Buyer 1, Buyer 2, Seller.
- Timing is as follows:
- Buyers offer prices p_{1}, p_{2} simultaneously.
- Nature chooses car quality θ according to F.
- Seller decides whom to trade with, if anyone.

Pure-strategy subgame-perfect Nash equilibria

- We assume negative selection, no atoms, and no market breakdown.
- Let p^{*} be the highest competitive equilibrium price.
- Extra assumption: "genericity"

$$
\exists \epsilon>0: \quad \text { for all } p \in\left(p^{*}-\epsilon, p^{*}\right) \quad E[\theta \mid r(\theta) \leq p]>p
$$

Proposition

Assume Negative selection, no atoms, no market breakdown and genericity. Then in any SPNE, both buyers offer the price p^{*}.

Pure-strategy subgame-perfect Nash equilibria

- Seller's decision: in any SPNE the seller
- sells at price $\max \left\{p_{1}, p_{2}\right\}$ if greater than $r(\theta)$
- keeps the good if $\max \left\{p_{1}, p_{2}\right\}<r(\theta)$
- Each buyer's SPNE expected payoff is zero.
- Proof by contradiction.
- Total Payoff of buyers:

$$
F\left(r^{-1}(p)\right)[E[\theta \mid r(\theta)<p]-p]=0
$$

- Thus, p must be a CE price or below $r(\underline{\theta})$.
- If $p<p^{*}$ there is a profitable deviation. Which one?

Overview

(1) Introduction to Information Economics

(2) Akerlof's Market for Lemons

- Setup
- Competitive Equilibria
- Equilibrium Multiplicity
- A game-theoretic approach
- Experimental Evidence
- Information and Trade

Market with one buyer

- Variant: only one buyer and one seller.
- In general, the equilibrium differs from the two-buyer case.
- However: under assumptions 'no atoms' and 'market breakdown' we have as before
- equilibrium with no trade.
- no equilibrium with trade.

Experimental evidence

- Ball, Bazerman, Carroll (1991): Laboratory Experiment of Akerlof's market with one buyer.
- A firm (acquirer) is considering making an offer to buy another firm (target).
- Acquirer is uncertain about the ultimate value of the firm.
- Target's management has an accurate estimate of the value.
- What final price offer should the acquirer make for the target?

Experimental evidence

- Experiment:
- Subjects play the role of "acquirer".
- Computer plays the role of "target".
- Acquirer knows that, under old management, the market value of the target is uniform in [$0,100 \mathrm{M}$].
- Value under new management is 50% higher than under old management.
- Target knows its value.
- Acquirer makes a price offer. The target accepts or rejects.
- subjects receive the realized profit as feedback.
- subjects play 20 rounds.
- subjects are rewarded in proportion to profits.
- What is the SPNE?

Experimental evidence

Fig. 1. Mean bids across trials for subjects in Experiment 1.

Experimental evidence

- Possible explanation: feedback too 'weak' to allow market unraveling.
- Probability of positive profit at $p>0$?

Overview

(1) Introduction to Information Economics

(2) Akerlof's Market for Lemons

- Setup
- Competitive Equilibria
- Equilibrium Multiplicity
- A game-theoretic approach
- Experimental Evidence
- Information and Trade

Relationship between information and trade

- Buyer and Seller can potentially trade a good of uncertain quality.
- Good's quality is equally likely to be of three types: $\omega \in\{L, M, H\}$.
- Buyer's valuation:

$$
b(\omega)=\left\{\begin{array}{llc}
14 & \text { if } & \omega=L \\
28 & \text { if } & \omega=M \\
42 & \text { if } & \omega=H
\end{array}\right.
$$

- Seller's valuation:

$$
s(\omega)=\left\{\begin{array}{ccc}
0 & \text { if } & \omega=L \\
20 & \text { if } & \omega=M \\
40 & \text { if } & \omega=H
\end{array}\right.
$$

- Trade is always efficient.

Relationship between information and trade

- Case 1: Buyer and Seller are equally uninformed.

$$
E[b(\omega)]=28>20=E[s(\omega)]
$$

- Trade can take place for all qualities at any price between 20 and 28.
- Case 2: Seller partially uninformed: $\{\{\mathrm{L}\},\{\mathrm{M}, \mathrm{H}\}\}$
- There is no price at which L, M, H are traded.

$$
E[b(\omega)]=28<30=E[s(\omega) \mid \omega \in\{M, H\}]
$$

- L can be traded at a price in $[0,14]$.

Relationship between information and trade

- Case 3: Seller is perfectly informed.
- L and M can be traded at a price in [20, 21].

$$
E[b \mid \omega \in\{L, M\}]=21>20=E[s \mid \omega=M]
$$

- Example shows that the market can expand in the face of greater information asymmetry.
- Relationship between information asymmetry and trade might be nonmonotonic.

