Advanced Microeconomics III Spence's Signaling Model

Francisco Poggi

Francisco Poggi

Introduction

- Akerlof's Market for Lemons: asymmetric information can lead to inefficient market outcomes.
 - Buyers cannot distinguish good from bad sellers.
 - Good sellers might be driven out of the market (adverse selection).

- To overcome adverse selection, good sellers need a way to convey their type.
- **Signaling**: type can be conveyed, but only through indirect observable actions.

Introduction

• Examples of signaling:

- Warranties: Firms use them to signal the quality of durable goods.
- Education: Workers use it to signal their ability to employers.
- Advertising: Companies use to signal product quality.

• Key questions:

- How does signaling occur in equilibrium?
- What are the welfare implications of signaling?

Spence's model

• Agents:

• A single worker and multiple firms (at least 2).

Worker Types:

- $\theta \in \{\theta_L, \theta_H\}$ with $\theta_H > \theta_L$.
- Only the worker knows θ .
- Firms assign probability q to type θ_H .

• Production and Payoffs:

- If employed by a firm, worker produces output θ .
- Firm's payoff:
 - θw if it employs the worker at wage w.
 - Zero otherwise.

Spence's model

• Timing:

- Worker chooses education level $e \in [0, \infty)$. This is publicly observed by all firms.
- Firms make wage offers to the worker.
- Worker chooses a firm to work for.
- Worker payoff when having education *e* and employed at wage *w*:

$$u(w, e|\theta) = w - c(e|\theta)$$

Where $c(e|\theta)$ is the cost of education.

• Note that education in this model is unproductive, i.e. it doesn't affect worker's output.

Spence's model

• Assumptions on the cost of education:

• The cost of no education is zero.

$$c(0|\theta) = 0$$
 for all θ

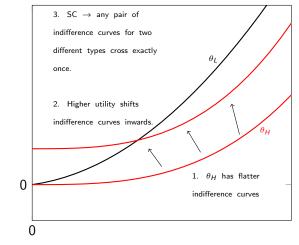
• The cost of education is str. increasing and str. convex for all $\boldsymbol{\theta}.$

$$c'(e| heta)>0$$
 and $c''(e| heta)>0$

• The high-type worker has a smaller <u>marginal</u> cost of education.

 $c'(e|\theta_H) < c'(e|\theta_L) \qquad \forall e > 0$ (Single-crossing)

Indifference curves



3

е

Solution concept

- **Solution concept**: Symmetric (Pure-strategy) Perfect Bayesian Equilibrium.
- Consists of:
 - A choice of education level for each worker type: e_L, e_H .
 - Firms' posterior beliefs about the worker being of type H: $\mu(e)$.
 - Wage offers of the firms: w(e).
- Satisfying:
 - Optimal education choice given wage offers.
 - Consistent beliefs whenever possible.
 - Wage offers constitute a Nash equilibrium at each subgame.
 - Firms believe other firms conform to equilibrium wage offer w(e) both on and off the equilibrium path.
- **Symmetry**: All firms hold the <u>same</u> beliefs after observing education. This is **Not** implied by weak PBE.

PBE analysis

• Wage offers:

• Competition among firms leads to the following wage offers (why?):

$$w(e) = E_{\mu(e)}[heta] = \mu(e) \cdot heta_H + (1 - \mu(e)) \cdot heta_L$$

• Education:

- We distinguish two types of pure-strategy equilibria.
 - Separating equilibria: $e_H \neq e_L$.
 - Pooling equilibria: $e_H = e_L$.

Separating equilibria

- We start characterizing separating equilibria: $e_H \neq e_L$.
 - Bayes' rule where possible:

$$\mu(e_L) = 0$$
 $\mu(e_H) = 1$

• By competition:

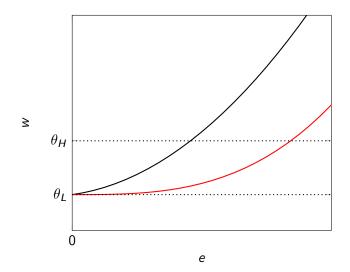
$$w(e_L) = \theta_L \qquad w(e_H) = \theta_H$$

Lemma

In any separating equilibrium, $e_L = 0$.

- PBE implies that $w(e) \in [\theta_L, \theta_H]$.
- So, if $e_L > 0$, the deviation to e = 0 is profitable for type θ_L .

Separating equilibria



FSS 23 11 / 36

Separating equilibria: incentive compatibility

Lemma

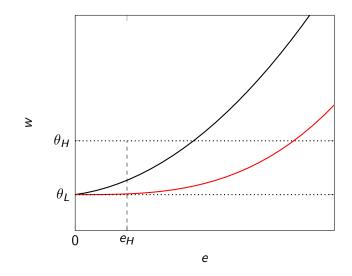
In a separating equilibrium, type H chooses $e_H > 0$ such that

$$\theta_H - c(e_H | \theta_H) \geq \theta_L \geq \theta_H - c(e_H | \theta_L)$$
 (IC)

• First inequality: type H prefers his education e_H rather than zero.

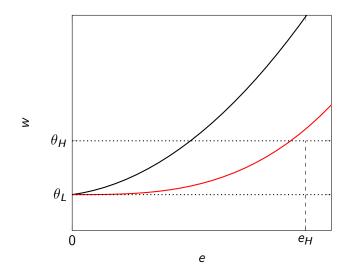
• Second inequality: type L prefers zero rather than e_H.

Separating equilibria: IC

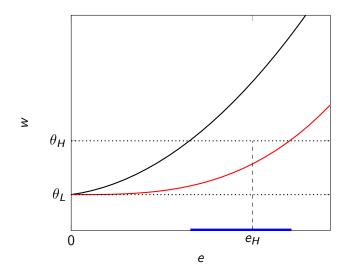


FSS 23 13 / 36

Separating equilibria: IC



Separating equilibria: IC



FSS 23 15 / 36

• Previous lemmata describe *necessary* conditions for separating equilibrium.

- These are also *sufficient*: remains to specify out-of-equilibrium beliefs.
 - Deviations are considered to be by a low type: $\mu(e) = 0$ for all $e \neq e_H$.
 - Then, consistent wage is θ_L for any $e \neq e_H$.
 - Any deviation is unprofitable.

Equilibrium multiplicity

- There are **multiple** separating equilibria.
 - These equilibria can be Pareto ranked.
 - The best separating equilibrium has the lowest education e_H .

$$c(e_H|\theta_L) = \theta_H - \theta_L$$

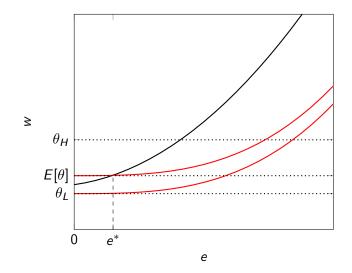
Pooling equilibria

• Pooling equilibrium: $e_L = e_H = e^*$.

- Bayes' rule where possible: $\mu(e^*) = \Pr(\theta = \theta_H) = q$.
- Competition implies that $w(e^*) = E[\theta]$.

Out-of-equilibrium beliefs: μ(e) = 0 for e ≠ e*.
Then w(e) = θ_l for e ≠ e*.

Pooling equilibria



FSS 23 19 / 36

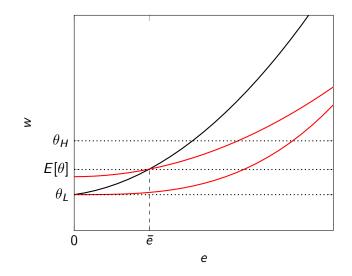
Multiple pooling equilibria

- There are multiple pooling equilibria.
- The best pooling equilibrium is the one with the lowest level of education (e^{*} = 0).

• What about the *worst* one?

$$E[\theta] - c(\bar{e}|\theta_L) = \theta_L$$
$$c(\bar{e}|\theta_L) = E[\theta] - \theta_L$$

Worst pooling equilibrium



Comparing pooling and deparating equilibra

- The best pooling equilibrium may or may not Pareto dominate the best separating equilibrium.
 - High types not always benefit from the availability of a signaling device. Only if their fraction is small enough.

- The best separating equilibrium *never* Pareto dominates the best pooling equilibrium.
 - The low type is always worse-off in a separating equilibrium.

Reasonable beliefs (equilibrium refinements)

- Which equilibrium is more likely to emerge?
 - Pareto dominance is not a game-theoretical argument.

- Forward induction arguments can be used to refine the equilibrium.
 - PBE allows for any beliefs off the equilibrium path.
 - Refinements put conditions on these off equilibrium beliefs.
 - Most refinements in this game uniquely select the least costly separating equilibrium.

- Cho and Kreps (1987) 'Intuitive criterion':
 - Key question: Who might benefit from the deviation?

Definition

A deviation e' is dominated in equilibrium for type θ if, for any sequentially rational response by the receivers $w' = E_{\mu'}[\theta]$ for some beliefs μ' , the resulting payoff $u(e', w', \theta)$ is less than the equilibrium payoff $u(e(\theta), w(e(\theta)), \theta)$.

Definition

A PBE passes the Intuitive Criterion Test (ICT) if no type θ would be better off deviating to an action $e' \neq e(\theta)$ should the receivers' beliefs following e' assign zero probability to types θ' for whom the deviation is dominated in equilibrium.

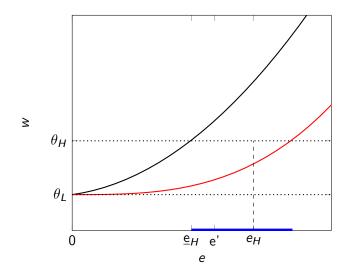
Intuitive criterion: separating equilibrium

- Let <u>e_H</u> be the minimal high-type education that can be sustained in a separating equilibrium.
- Starting from a separating equilibrium with $e_H > \underline{e}_H$, we show that ICT is violated.
 - Consider a deviation to $e' \in (\underline{e}_H, e_H)$ (This is off the equilibrium path).
 - A type θ_L can guarantee a payoff of θ_L by following equilibrium strategies. The deviation can bring type θ_L at most:

$$\theta_H - c(e'|\theta_L) < \theta_L$$

- Thus, a type θ_L would never deviating to e'. Formally e' is dominated in equilibrium for type θ_L .
- The PBE does not pass the ICT: If $\mu(e') = 1$, type θ_H would benefit from deviating to e'.

Intuitive criterion: separating equilibrium



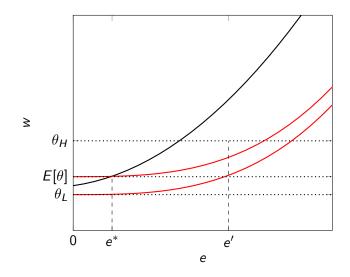
Intuitive criterion: pooling equilibrium

- Let start instead from a pooling equilibrium at e*.
- Claim: there exists e' such that

$$E[heta] - c(e^*| heta_H) < heta_H - c(e'| heta_L) < E[heta] - c(e^*| heta_L)$$

- Deviating to e' is dominated in equilibrium for type θ_L .
- Thus, the pooling PBE does not pass the ICT.
 - If $\mu(e') = 1$, type θ_H would benefit from deviating to e'.

Intuitive criterion: pooling equilibrium



- Only the best separating PBE passes the ICT.
- Notice that sometimes *forced pooling* generates a Pareto improvement.
 - In particular, when the share of high types is sufficiently large.
- Another Pareto improvement can arise with *cross-subsidization*.

Model with continuum of types

- Consider a model with a continuous of types.
 - Support in $[\underline{\theta}, \overline{\theta}]$.
 - Density function *f* str. positive everywhere in the support.

- Question: Is there a separating equilibrium? Is it unique?
 - Parametric assumption: $c(e|\theta) = \alpha \cdot e^2/\theta$.

Empirical evidence

- Bedard (2001) "Human Capital Versus Signaling Models"
 - Study education as a signal of ability, exploiting the effect of constraining access to university in high school graduation levels.
 - **Empirical finding**: Regions with universities have higher high-school drop-out rates.
 - Difficult to explain in a model of human capital.
 - Signaling explanation:
 - With no university nearby, more high-ability students stop their education after completing high-school.
 - Low-ability students have incentives to finish high-school to pool with high-ability students.

• Policy implications:

• Improving access to university might increase drop-out rates and depress wages for some kids.

Other models related to signaling

 Evidence and voluntary disclosure of verifiable information. Grossman (1981) Milgrom (1981) Dye (1985)

 Costless signaling (cheap talk): might work if preferences between sender and receiver are partially aligned. (Crawford Sobel (1982))

Classical evidence models

Seminal model developed by Grossman (1981) and Milgrom (1981)

- Similar to the previous model.
 - One worker, more than 2 firms.
 - Worker has private type θ with cdf F.
 - Firms compete offering wages.

- Instead of choosing a level of education, worker can take a (free) test that perfectly reveals his type.
 - Formally, worker can send a message in $\{\emptyset, \theta\}$.
 - Firms observe the message before making wage offers.

Unraveling

- Let w(m) be the wage that firms offer to an agent that sends message m.
- Let Θ_\circ be the subset of types that chooses the empty message in equilibrium.
- **Claim**: almost all types take the test: $\Theta_{\circ} \subseteq \{\underline{\theta}\}$
 - Suppose that $w(\emptyset) > \underline{\theta}$.
 - It must be that $\Theta_\circ = [\underline{ heta}, w(\emptyset))$
 - $w(\emptyset) = E[\theta|\Theta_\circ] < w(\emptyset)$. Abs!
 - So $w(\emptyset) = \underline{\theta}$ and $\Theta_{\circ} \subseteq \{\underline{\theta}\}.$

Partial unraveling

 Dye (1985) and Jung and Kwon (1988): Worker has evidence with some probability λ, and no evidence otherwise (independent of type).

Partial unraveling:

- Let w be the wage for a worker in the absence of evidence.
- Any type with $\theta < w$ will not present evidence.
- Equilibrium w is the unique solution to:

$$\begin{split} w &= E[\theta|m=\emptyset] &= E[\theta| \text{ no evidence or } \theta < w]. \\ &= q(w) \cdot E[\theta] + (1 - q(w)) \cdot E[\theta|\theta < w] \end{split}$$

where q(w) = Pr(no evidence | no evidence or $\theta < w)$.

Partial unraveling

• So,

• Example: $\theta \sim U[0, b]$.

$$q(w) = \frac{p}{p+(1-p)F(w)} = \frac{p \cdot b}{p \cdot b + (1-p) \cdot w}$$

$$E[\theta|m=\emptyset] = \frac{p \cdot b}{p \cdot b + (1-p) \cdot w} \cdot \frac{b}{2} + \frac{(1-p)w}{p \cdot b + (1-p) \cdot w} \cdot \frac{w}{2}$$

• Solving $E[\theta|m = \emptyset] = w$ we get

$$w = \frac{\sqrt{p} \cdot b}{1 + \sqrt{p}}$$