Advanced Microeconomics III Mechanism Design

Francisco Poggi

Introduction

- Before, we consider the problem of selling an object to a single agent (buyer).
 - We assumed that the agent was making optimal choices, given the mechanism.

- We are interested in applications where multiple agents have private information.
 - What outcomes can be *implemented* depends on what solution concept we consider.

Social Choice Problem

- An environment consists of:
 - (Finite) set of agents $i \in I$.
 - A set of outcomes Y.
 - Θ_i : set of possible types for agents i. Θ the Cartesian product.
 - $\hat{u}_i: Y \times \Theta \to \mathbb{R}$. utility of agent *i* given outcome and vector of types.

Social Choice Function

A social choice function (SCF) is a mapping $f: \Theta \to Y$.

- Examples:
 - Bilateral trade.
 - Auctions.
 - Public goods.
 - Elections.
 - Etc.

Mechanisms

- A mechanism $\Gamma = (S_1, S_2, ..., S_I, g)$ consists of a simultaneous game of incomplete information in which:
 - Each agent has a set of actions S_i . S the Cartesian product.
 - Agents are privately informed of their types.
 - $g: S \to Y$ is the outcome function.
- An environment and a mechanism define a game.
- A strategy for agent i in mechanism Γ is a map $\sigma_i: \Theta_i \to S_i$.
- Question: which SCF can be implemented given a solution concept? i.e. for which SCF f there exists a mechanism Γ and a strategy profile $\sigma = (\sigma_1, \sigma_2, ..., \sigma_I)$ such that
 - \bullet σ is a *solution/equilibrium* of the associated game.
 - $f(\theta) = g(\sigma(\theta))$ for every $\theta \in \Theta$.

Direct Revelation Mechanisms

A Direct Revelation Mechanism $g:\Theta\to Y$ is a mechanism in which agents are asked to report a type $(S_i=\Theta_i)$ and the outcome function is given by g.

Overview

1 Dominant Strategies Implementation

2 Bayesian Implementation

Auctions

Dominant Strategies Implementation

Fix an environment and a mechanism Γ . We say that the strategy profile σ^* is a *dominant strategy solution* if for every agent i, type profile θ , and actions $s_i \in S_i$, and $s_{-i} \in S_{-i}$.

$$u_i(g(\sigma_i^*(\theta_i), s_{-i}), \theta) \geq u_i(g(s_i, s_{-i}), \theta)$$

- This is different than equilibrium in dominant strategies:
 - omitting the condition that the inequality must be sometimes strict is standard in mechanism design.
- The appeal of this solution concept is that is completely "belief-free".

Dominant Strategies Implementation

If there is a mechanism Γ with dominant strategy solution σ^* such that

$$f(\theta) = g(\sigma(\theta))$$
 for all $\theta \in \Theta$

Then we say that the social choice function f is *implemented in dominant* strategies by Γ .

- Γ is the *implementing mechanism*.
- f is implementable in dominant strategies.

Incentive Compatibility

• We say that a SCF f is Dominant Strategy Incentive Compatible (DSIC) if, for all $\theta \in \Theta$ $\theta'_i \in \Theta_i$ and $\theta'_{-i} \in \Theta_{-i}$,

$$\hat{u}_i(f(\theta_i, \theta'_{-i}), \theta) \ge \hat{u}_i(f(\theta'_i, \theta'_{-i}), \theta)$$

Revelation Principle

Revelation Principle

A social choice function f is implementable in dominant strategies if and only if f is DSIC.

- f is implementable in dominant strategies $\Rightarrow f$ is DSIC.
 - Otherwise, there is an agent i and type θ_i that would benefit from mimicking another type $\hat{\theta}_i$.
- f is DSIC $\Rightarrow f$ is implementable in dominant strategies.
 - Consider the DRM f.
- This Revelation Principle allows us to focus WLOG on DRM f such that f is DSIC.

Quasi-linear private-values setting

- In many applications, we assume the following structure:
 - $Y = X \times \mathbb{R}^N$ where
 - $x \in X$ is a non-monetary alternative.
 - $t = (t_1, ..., t_N)$ is a profile of monetary transfers.
 - t_i is the payment from agent i.
 - Quasi-linear utility and private values:

$$\hat{u}_i(y,\theta) = u_i(x,\theta_i) - t_i$$

• Examples include auctions and public goods provision.

Quasi-linear private-values setting

- In quasi-linear private-values, the outcome and the SCF have two components:
 - $\alpha:\Theta\to X$ allocation rule.
 - $\tau:\Theta\to\mathbb{R}^N$ transfers rule.

• **Note**: in private-values settings θ_{-i} should be interpreted as the report by i's opponents.

Quasi-linear private-values setting

- In dominant strategy implementation, it does not matter for i whether reports of others coincide with the truth or not.
- Moreover, the solution concept is robust to any distributions of true types, so this does not need to be specified.
- A natural question is whether there are other SCF that can be implemented when we relax the solution concept.

Overview

- Dominant Strategies Implementation
- Bayesian Implementation

Auctions

Bayesian Implementation

- A Bayesian environment consists of and environment plus a distribution over types $\Phi \in \Delta(\Theta)$, with density ϕ when applicable.
- We assume that
 - Agents are EU maximizers.
 - 2 Types are independently distributed.
 - Quasi-linear utility with private values.

• First, we prove a revelation principle for Bayesian implementation without assuming 2 or 3.

Bayesian Nash equilibrium

• Consider a Bayesian environment and a mechanism Γ.

• A strategy profile σ^* is a *Bayesian Nash equilibrium* if for every agent i and type θ_i ,

$$\sigma_i^*(\theta_i) \in \arg \max_{s_i \in S_i} \quad E_{\theta_{-i}} \quad \left[\hat{u}_i(g(s_i, \sigma_{-i}^*(\theta_{-i}), (\theta_i, \theta_{-i})) \mid \theta_i \right]$$

Implementation

Given a Bayesian environment, a mechanism Γ implements a social choice function f if there exists a BNE σ^* of the associated game such that $f(\theta) = g(\sigma^*(\theta))$ for all θ .

• By the revelation principle, we can restrict attention WLOG to DRM.

Revelation Principle for Bayesian Implementation

A social choice function f is called *incentive compatible* (IC) if for all i and θ_i ,

$$heta_i \in ext{ arg } \max_{\hat{ heta}_i \in \Theta_i} \left[\hat{u}_i(f(\hat{ heta}_i, heta_{-i}), (heta_i, heta_{-i})) \ \middle| \ heta_i
ight]$$

Revelation Principle

A mechanism that implements f exists if and only if f is IC.

• In other words, implementability is a property of the SCF, no need to check any equilibria of any games.

Revelation Principle for Bayesian Implementation

Proof.

- f is IC \Rightarrow Exists mechanism that implements f
 - Consider the direct mechanism associated with f.
 - Define the *truth-telling strategy* σ_i^* of i:

$$\sigma_i^*(\theta_i) = \theta_i$$
 for all $\theta_i \in \Theta_i$

- From IC of f it is immediate that $(\sigma_1^*,...,\sigma_N^*)$ is an equilibrium of Γ .
- Hence, f is implemented by Γ .

Revelation Principle for Bayesian Implementation

Proof. (cont).

- Exists mechanism that implements $f \Rightarrow f$ is IC
 - Proof by contrapositive.
 - Suppose that *f* is not IC.
 - Then there exists i, θ_i and $\hat{\theta}_i$ such that:

$$E_{\theta_{-i}}\left[\hat{u}_i(f(\hat{\theta}_i,\theta_{-i}),(\theta_i,\theta_{-i})) \mid \theta_i\right] > E_{\theta_{-i}}\left[\hat{u}_i(f(\theta_i,\theta_{-i}),(\theta_i,\theta_{-i})) \mid \theta_i\right]$$

- Suppose that there exists a game Γ and an equilibrium σ such that $g(\sigma(\theta)) = f(\theta)$
- Then type θ_i if agent i has an incentive to mimic $\hat{\theta}_i$, i.e. deviate to action $\sigma_i(\hat{\theta}_i)$.
- ullet This contradicts the fact that σ was an equilibrium.

Bayesian Incentive Compatibility

- From now on, we consider independent types with quasi-linear utilities and private values (assumptions 2 and 3).
- A DRM is a pair (Q, t) where $Q : \Theta \to \Delta(X)$ and $t : \Theta \to \mathbb{R}^N$.
- Let

$$\bar{Q}_{i}(\hat{\theta}_{i})(x) := \int_{\Theta_{-i}} Q(\hat{\theta}_{i}, \theta_{-i})(x) \ dF_{-i}(\theta_{-i})$$

- This denotes the interim expected lottery over X when agent i reports $\hat{\theta}_i$ and all other agents report truthfully.
- Notice that the distribution does not depend on the true type θ_i . This is because of the independence assumption.
- Similarly, let

$$ar{t}(\hat{ heta}_i) := \int_{\Theta_{-i}} t_i(\hat{ heta}_i, heta_{-i}) \ dF_{-i}(heta_{-i})$$

• This denotes the expected transfer from i that reports $\hat{\theta}_i$.

Bayesian Incentive Compatibility

• A DRM (Q,t) is Bayesian Incentive Compatible (BIC) if for all i and θ_i

$$u_i(\bar{Q}_i(\theta_i), \theta_i) - \bar{t}_i(\theta_i) \ge u_i(\bar{Q}_i(\hat{\theta}_i), \theta_i) - \bar{t}_i(\hat{\theta}_i)$$
 $\forall \hat{\theta}_i \in \Theta_i$

 By virtue of the Revelation Principle, we restrict attention to BIC DRMs.

Interim Individual Rationality

• A DRM (Q, t) is interim individually rational if, for all i, all θ_i ,

$$U_i(\theta_i) := u_i(\bar{Q}(\theta_i), \theta_i) - \bar{t}_i(\theta_i) \geq 0$$

• $U_i(\theta_i)$ is the *interim* utility of type θ_i of agent i.

Payoff Equivalence

Incentive compatibility implies that

$$U_i(\theta) = \max_{\hat{\theta}_i \in \Theta_i} \quad u_i(\bar{Q}_i(\hat{\theta}_i), \theta_i) - \bar{t}_i(\hat{\theta}_i)$$

Applying the Envelope Theorem:

$$U_i(\theta_i) = U_i(0) + \int_0^{\theta_i} u_{i2}(\bar{Q}_i(\tilde{\theta}), \tilde{\theta}) d\tilde{\theta}$$

Revenue Equivalence

Theorem

Let (Q, t) and (Q', t') be two BIC mechanisms such that $\bar{Q}(\theta_i) = \bar{Q}'(\theta_i)$ for all i and θ_i . Then there exist C_i such that $\bar{t}(\theta_i) = \bar{t}'(\theta_i) + C_i$ for all θ and all i.

- Note: First price auction, second price auction, English auction, and Dutch auction generate the same allocation and give zero to each of the lowest bidder types.
- By revenue equivalence, they must all generate the same revenue for the seller.

Overview

Dominant Strategies Implementation

- 2 Bayesian Implementation
- 3 Auctions

Auctions

- Buyers: i = 1, ...N
- Single indivisible object.
- Buyer *i* values the object θ_i .
- Independent valuations: θ_i distributed with cdf F_i and pdf f_i .
- Seller knows F_i.

Auctions

Auction setting:

$$X = \left\{ (x_1, ..., x_N) \in [0, 1]^N : \sum_{j=1}^N x_j \le 1 \right\}$$
 $u_i(x, \theta_i) = \theta_i \cdot x_i$

Revenue Maximizing Auctions

- For any auction (and in any linear-utility environment with voluntary participation) we can pose the question:
 - Among all scf f that can be implemented with voluntary participation, what is the one that maximizes expected revenue R(f)?

$$\max_f \ R(f) \quad s.t. \quad f \text{ is IC and } U_i(\theta_i) \geq \bar{u}_i(\theta_i) = 0$$

• (We normalize outside value of each type to zero.)

Optimal Auctions

- By the Revelation Principle we can focus on DRM.
 - $q:\Theta\to [0,1]^N$,
 - $\sum_i q_i(\theta) \leq 1$
 - $t:\Theta\to\mathbb{R}^N$

$$U_i(\theta_i) = E_{\theta_{-i}}[\theta_i q_i(\theta) - t_i(\theta)] = \theta_i \bar{q}_i(\theta_i) - \bar{t}_i(\theta_i)$$

Where

$$ar{q}_i(heta_i) = E_{ heta_{-i}}[q_i(heta)]$$

 $ar{t}_i(heta_i) = E_{ heta_{-i}}[t_i(heta)]$

Maximization Problem

- ullet Choose the DRM (q,t) that maximizes expected revenue subject to
 - Bayesian Incentive Compatibility
 - Interim Individual Rationality

• (Seller's value for the object is normalized to zero.)

Expected Total Revenue

$$E[R] = E_{\theta} \sum_{i=1}^{N} t_{i}(\theta)$$

$$= \sum_{i=1}^{N} E_{\theta}[t_{i}(\theta)]$$

$$= \sum_{i=1}^{N} E_{\theta_{i}}[\bar{q}_{i}(\theta_{i})\theta_{i} - U_{i}(\theta_{i})]$$

Expected Revenue from single bidder

By payoff-equivalence:

$$U_i(heta_i) = U_i(0) + \int_0^{ heta_i} ar{q}_i(s) ds$$

• So, (recall from the single buyer case)

$$\begin{split} E[R_i] &:= E_{\theta_i}[\bar{q}_i(\theta_i)\theta_i - U_i(\theta_i)] \\ &= \int_0^1 \left[\bar{q}_i(r)r - U_i(0) - \int_0^r \bar{q}_i(s) \ ds \right] f_i(r) \ dr \\ &= E_{\theta_i}\left[\bar{q}_i(\theta_i) \cdot VS_i(\theta_i) \right] - U_i(0) \end{split}$$

Total Expected Revenue

$$E[R] := E_{\theta} \left[\sum_{i=1}^{N} q_i(\theta) \left[\theta_i - \frac{1 - F_i(\theta_i)}{f_i(\theta_i)} \right] \right] - \sum_{i=1}^{N} U_i(0)$$

- Seller chooses the functions q_i and the constants $U_i(0)$ to maximize the expression subject to:
 - Monotonicity.
 - IIR.

- At the optimum, $U_i(0) = 0$ for all $i \in I$.
- All IIR constraints are satisfied by the envelope condition.

Ignoring Monotonicity

$$\max_{q \nearrow} \quad E_{\theta} \left[\sum_{i=1}^{N} q_i(\theta) \left[\theta_i - \frac{1 - F_i(\theta_i)}{f_i(\theta_i)} \right] \right]$$

- As before, we
 - ignore monotonicity,
 - maximize separately for all $\theta \in \Theta$
 - check if the allocation rule satisfies monotonicity.

Ignoring Monotonicity

$$\max_{q} \sum_{i=1}^{N} q_i(\theta) \left[\theta_i - \frac{1 - F_i(\theta_i)}{f_i(\theta_i)} \right]$$

• The optimal q is:

$$q_i(\theta) = \left\{ egin{array}{ll} 1 & ext{if } VS_i(\theta_i) > VS_j(\theta_j) \; orall j
eq i \; ext{and} \; VS_i(\theta_i) \geq 0 \\ 0 & ext{otherwise}. \end{array}
ight.$$

- (Ties are not important.)
- This allocation rule is monotone if VS_i is nondecreasing.
- A sufficient condition (often assumed) is that hazard rate is increasing.

Properties of optimal auctions

- Downward distortions: the seller might inefficiently retain the object.
 - This happens when VS are all negative but θ_i is positive for some i.
- For symmetric bidders with nondecreasing hazard rate, the allocation rule is efficient conditional on sale.
- For asymmetric bidders, the object might be allocated to a bidder different than the one that values the good the most.
- In the symmetric case, the optimal auction can be implemented by any of the standard auction formats (FPSB, SPSB, English, Dutch) with a reserve price.

Dominant Strategy Implementation

- The first price auction with an optimal reserve price maximizes, in equilibrium, the revenue of the seller.
- The same allocation and revenue can be obtained with a second price auction. However, the equilibrium in the second price auction is in dominant strategies!
- Manelli and Vincent (2010) provide conditions under which SCF that are BIC can also be implemented in Dominant Strategies.