Advanced Microeconomics III Mechanism Design

Francisco Poggi

Francisco Poggi

Introduction

- Before, we consider a single agent.
 - We only assumed that the agent was making *optimal* choices.

- We are interested in applications where multiple agents have private information.
 - What can be *implemented* depends on our solution concept.

Social Choice Problem

- (Finite) set of individuals $i \in I$.
- Y set of alternatives.
- Θ_i set of possible types for *i*. Θ the Cartesian product.
- $\hat{u}_i(y,\theta)$ utility of agent *i* for outcome *y* and vector of types θ .

Social Choice Function

A social choice function is a mapping $f: \Theta \to Y$.

- Examples:
 - Bilateral trade.
 - Auctions.
 - Public goods.
 - Elections.
 - Etc.
- In the single agent case, $Y = \Theta \times \mathbb{R}$ and we split f in an allocation rules and a payment rule.

Mechanisms

- \bullet Consider an extensive form game Γ of incomplete information in which:
 - Players are privately informed of their types.
 - Each terminal node is assigned some $y \in Y$.
 - Players' payoffs at the nodes are $\hat{u}_i(y, \theta)$.
- Let σ be a (pure) strategy profile in Γ .
- Let g(σ(θ)) ∈ Y be the element of Y that is attached to the terminal node reached by σ when profile of types is θ.
 - g is a social choice function.
- Question: which social choice functions can be implemented by games Γ, given a solution concept (i.e. when σ is required to be a NE, WPBE, or other.)

Overview

Dominant Strategies Implementation

Bayesian Implementation

Dominant Strategies Implementation

Given an extensive-form game Γ , if there is a strategy profile σ such that for each $i, \theta, \hat{\sigma}_i, \hat{\sigma}_{-i}$.

$$u_i(g(\sigma_i(\theta_i), \hat{\sigma}_{-i}), \theta) \geq u_i(g(\hat{\sigma}_i, \hat{\sigma}_{-i}), \theta)$$

then σ is a *dominant strategy solution* of Γ .

- Omitting the condition that the inequality must be sometimes strict is standard in mechanism design.
- The appeal of this solution concept is that is completely "belief free".

Dominant Strategies Implementation

If there is an extensive-form game Γ with dominant strategy solution σ such that

$$f(heta) = g(\sigma(heta)) \quad ext{ for all } heta \in \Theta$$

Then we say that the social choice function f is *implemented in dominant* strategies by Γ .

- Γ is the *implementing mechanism*.
- f is implementable in dominant strategies.

Incentive Compatibility

 We say that f is Dominant Strategy Incentive Compatible (DSIC) if, for all θ ∈ Θ θ'_i ∈ Θ_i and θ'_{-i} ∈ Θ_{-i},

 $\hat{u}_i(f(\theta_i, \theta'_{-i}), \theta) \geq \hat{u}_i(f(\theta'_i, \theta'_{-i}), \theta)$

• Claim: if f is implementable in dominant strategies then f is DSIC.

Revelation Principle

• Consider the simplest possible game to implement a scf f.

- Simultaneous moves.
- Each player's action set A_i is simply Θ_i .
- $g(\theta) = f(\theta)$
- This is the Direct Revelation Mechanism associated with f.

Revelation Principle

A social choice function f is implementable in dominant strategies if and only if f is DSIC.

• Sufficient to consider DRM.

Quasi-linear private-values setting

- Many applications follow in the next setup:
- $Y = X \times \mathbb{R}^N$ where
 - $x \in X$ is a non-monetary alternative.
 - $t = (t_1, ..., t_N)$ is a profile of monetary transfers.
 - *t_i* is the payment from agent *i*.
- Quasi-linear utility and private values:

$$\hat{u}_i(y,\theta) = u_i(x,\theta_i) - t_i$$

• Examples include auctions and public goods provision.

FSS 22 10 / 35

Quasi-linear private-values setting

- As in the single agent case, in quasi-linear private-values settings we can split the scf in two components:
 - $\alpha: \Theta \to X$ allocation rule.
 - $\tau: \Theta \to \mathbb{R}^N$ transfers rule.

- **Note**: in private-values settings θ_{-i} should be interpreted as the report by *i*'s opponents.
- The pair (α, τ) also defines a direct mechanism.

Quasi-linear private values setting

- If dominant strategy is the solution concept, it does not matter for i whether reports coincide with truth or not.
- The solution concept is robust to any distributions of true types, so this does not need to be specified.
- A natural question is whether there are other things that can be implemented when we relax the solution concept.

Overview

Bayesian Implementation

- In a Bayesian environment, on top of agents, outcomes, types, utility, we need to define a distribution over types Φ , with density ϕ when applicable.
- We assume that agents are *expected* utility maximizers.
 - Uncertainty with respect to others' types and actions.
- Most commonly studies settings have the following features:
 - Types are independently distributed.
 - Quasi-linear utility with private values.
- We will consider these settings, but first we prove the revelation principle in a general Bayesian setting.

Bayesian Nash equilibrium

- Consider a Bayesian environment and a mechanism Γ.
- A strategy for agent *i* is a map σ_i : Θ_i → S_i where S_i is the set of interim strategies of *i* in Γ.

• A strategy profile σ^* is a Bayesian Nash equilibrium of Γ if

$$\sigma_i^*(\theta_i) \in \arg\max_{s_i \in S_i} E_{\theta_{-i}}[\hat{u}_i(g(s_i, \sigma_{-i}^*(\theta_{-i})), (\theta_i, \theta_{-i})|\theta_i]$$

Implementation

A mechanism Γ implements a social choice function f if there exists a BNE σ^* of Γ such that $f(\theta) = g(\sigma^*(\theta))$ for all θ .

• Again, we are interested in Bayesian Nash equilibria of arbitrary mechanisms, but by the revelation principle we can restrict attention to DRM.

Revelation Principle for Bayesian Implementation

A social choice function f is called *incentive compatible* if for all i, θ_i , θ_{-i} ,

$$heta_i \in rg\max_{\hat{ heta}_i \in \Theta_i} \quad E_{ heta_{-i}} \left[\hat{u}_i(f(\hat{ heta}_i, heta_{-i}), (heta_i, heta_{-i})) \mid heta_i
ight]$$

Revelation Principle

A mechanism that implements f exists if and only if f is incentive compatible.

• Implementability is a property of the scf, no need to check any equilibria of any games.

Revelation Principle for Bayesian Implementation

Proof.

- f is IC \Rightarrow Exists mechanism that implements f
 - Consider the direct mechanism associated with f.
 - Define the *truth-telling strategy* σ_i^* of *i*:

$$\sigma_i^*(\theta_i) = \theta_i$$
 for all $\theta_i \in \Theta_i$

- From IC of f it is immediate that $(\sigma_1^*, ..., \sigma_N^*)$ is an equilibrium of Γ .
- Hence, f is implemented by Γ .

Revelation Principle for Bayesian Implementation

Proof. (cont).

- Exists mechanism that implements $f \Rightarrow f$ is IC
 - Proof by contrapositive.
 - Suppose that *f* is not IC.
 - Then there exists i, θ_i and $\hat{\theta}_i$ such that:

$$E_{\theta_{-i}}\left[\hat{u}_{i}(f(\hat{\theta}_{i},\theta_{-i}),(\theta_{i},\theta_{-i})) \mid \theta_{i}\right] > E_{\theta_{-i}}\left[\hat{u}_{i}(f(\theta_{i},\theta_{-i}),(\theta_{i},\theta_{-i})) \mid \theta_{i}\right]$$

- Suppose that there exists a game Γ and an equilibrium σ such that $g(\sigma(\theta))=f(\theta)$
- Then type θ_i if agent i has an incentive to mimic θ̂_i, i.e. deviate to action σ_i(θ̂_i).
- $\bullet\,$ This contradicts the fact that σ was an equilibrium.

Bayesian Incentive Compatibility

- From now on we condider independent types with quasi-linear utilities and private values.
- A DRM is a pair (Q, t) where $Q : \Theta \to \Delta(X)$ and $t : \Theta \to \mathbb{R}^N$.
- Let

$$ar{Q}_i(\hat{ heta}_i)(x) := \int_{\Theta_{-i}} Q(\hat{ heta}_i, heta_{-i})(x) \ dF_{-i}(heta_{-i})$$

- This denotes the interim expected lottery over X when agent *i* reports $\hat{\theta}_i$ and all other agents report truthfully.
- Notice that the distribution does not depend on the true type θ_i . This is because of the independence assumption.
- Similarly, let

$$ar{t}(\hat{ heta}_i) := \int_{\Theta_{-i}} t_i(\hat{ heta}_i, heta_{-i}) \ dF_{-i}(heta_{-i})$$

• This denotes the expected transfer from *i* that reports $\hat{\theta}_i$.

Bayesian Incentive Compatibility

• A DRM (Q, t) is Bayesian Incentive Compatible (BIC) if for all i and θ_i

$$u_i(ar{Q}_i(heta_i), heta_i) - ar{t}_i(heta_i) \geq u_i(ar{Q}_i(\hat{ heta}_i), heta_i) - ar{t}_i(\hat{ heta}_i) \qquad orall \hat{ heta}_i \in \Theta_i$$

• By virtue of the Revelation Principle, we will restrict attention to BIC DRMs.

Interim Individual Rationality

• A DRM (Q, t) is interim individually rational if, for all i, all θ_i , $U_i(\theta_i) := u_i(\bar{Q}(\theta_i), \theta_i) - \bar{t}_i(\theta_i) \ge 0$

• $U_i(\theta_i)$ is the *interim* utility of type θ_i of agent *i*.

Payoff Equivalence

Incentive compatibility implies that

$$U_i(\theta) = \max_{\hat{\theta}_i \in \Theta_i} \quad u_i(\bar{Q}_i(\hat{\theta}_i), \theta_i) - \bar{t}_i(\hat{\theta}_i)$$

• Applying the Envelope Theorem:

$$U_i(heta_i) = U_i(0) + \int_0^{ heta_i} u_{i2}(ar{Q}_i(ilde{ heta}), ar{ heta}) \,\, dar{ heta}$$

Revenue Equivalence

Theorem

Let (Q, t) and (Q', t') be two BIC mechanisms such that $\overline{Q}(\theta_i) = \overline{Q}'(\theta_i)$ for all i and θ_i . Then there exist C_i such that $\overline{t}(\theta_i) = \overline{t}'(\theta_i) + C_i$ for all θ and all i.

- Note: First price auction, second price auction, English auction, and Dutch auction generate the same allocation and give zero to each of the lowest type bidder.
- By revenue equivalence they all generate the same revenue to the seller.

Overview

Bayesian Implementation

Auctions

- Buyers: *i* = 1, ... *N*
- Single indivisible object.
- Buyer *i* values the object θ_i .
- Independent valuations: θ_i distributed with cdf F_i and pdf f_i .
- Seller knows F_i.

Auctions

• Auction setting:

$$egin{aligned} X &= \left\{ (x_1,...,x_N) \in [0,1]^N : \sum_{j=1}^N x_j \leq 1
ight\} \ u_i(x, heta_i) &= heta_i \cdot x_i \end{aligned}$$

Revenue Maximizing Auctions

- For any auction (and in any linear-utility environment with voluntary participation) we can pose the question:
 - Among all scf f that can be implemented with voluntary participation, what is the one that maximizes expected revenue R(f)?

 $\max_{f} \quad R(f) \quad s.t. \quad f \text{ is IC and } U_i(\theta_i) \geq \bar{u}_i(\theta_i) = 0$

• (We normalize outside value of each type to zero.)

Optimal Auctions

• By the Revelation Principle we can focus on DRM.

•
$$q: \Theta \rightarrow [0,1]^N$$
,
• $\sum_i q_i(\theta) \leq 1$
• $t: \Theta \rightarrow \mathbb{R}^N$

$$U_i(\theta_i) = E_{\theta_{-i}}[\theta_i q_i(\theta) - t_i(\theta)] = \theta_i \bar{q}_i(\theta_i) - \bar{t}_i(\theta_i)$$

• Where

$$\bar{q}_i(\theta_i) = E_{\theta_{-i}}[q_i(\theta)]$$

$$\bar{t}_i(\theta_i) = E_{\theta_{-i}}[t_i(\theta)]$$

Maximization Problem

• Choose the DRM (q, t) that maximizes expected revenue subject to

- Bayesian Incentive Compatibility
- Interim Individual Rationality

• (Seller's value for the object is normalized to zero.)

Expected Total Revenue

$$egin{aligned} E[R] &= E_{ heta} \sum_{i=1}^N t_i(heta) \ &= \sum_{i=1}^N E_{ heta}[t_i(heta)] \ &= \sum_{i=1}^N E_{ heta_i}[ar{q}_i(heta_i) heta_i - U_i(heta_i)] \end{aligned}$$

Expected Revenue from single bidder

• By payoff-equivalence:

$$U_i(heta_i) = U_i(0) + \int_0^{ heta_i} ar q_i(s) ds$$

• So, (recall from the single buyer case)

$$\begin{split} E[R_i] &:= E_{\theta_i}[\bar{q}_i(\theta_i)\theta_i - U_i(\theta_i)] \\ &= \int_0^1 \left[\bar{q}_i(r)r - U_i(0) - \int_0^r \bar{q}_i(s) \ ds \right] f_i(r) \ dr \\ &= E_{\theta_i}\left[\bar{q}_i(\theta_i) \cdot VS_i(\theta_i) \right] - U_i(0) \end{split}$$

Total Expected Revenue

$$E[R] := E_{\theta} \left[\sum_{i=1}^{N} q_i(\theta) \left[\theta_i - \frac{1 - F_i(\theta_i)}{f_i(\theta_i)} \right] \right] - \sum_{i=1}^{N} U_i(0)$$

- Seller chooses the functions q_i and the constants $U_i(0)$ to maximize the expression subject to:
 - Monotonicity.
 - IIR.
- At the optimum, $U_i(0) = 0$ for all $i \in I$.
- All IIR constraints are satisfied by the envelope condition.

Ignoring Monotonicity

$$\max_{q \nearrow} \quad E_{\theta} \left[\sum_{i=1}^{N} q_i(\theta) \left[\theta_i - \frac{1 - F_i(\theta_i)}{f_i(\theta_i)} \right] \right]$$

As before, we

- ignore monotonicity,
- maximize separately for all $\theta \in \Theta$
- check if the allocation rule satisfies monotonicity.

Ignoring Monotonicity

$$\max_{q} \quad \sum_{i=1}^{N} q_i(heta) \left[heta_i - rac{1 - \mathcal{F}_i(heta_i)}{f_i(heta_i)}
ight]$$

• The optimal q is:

$$q_i(\theta) = \begin{cases} 1 & \text{if } VS_i(\theta_i) > VS_j(\theta_j) \ \forall j \neq i \text{ and } VS_i(\theta_i) \geq 0 \\ 0 & \text{otherwise.} \end{cases}$$

- (Ties are not important.)
- This allocation rule is monotone if VS_i is nondecreasing.
- A sufficient condition (often assumed) is that hazard rate is increasing.

Properties of optimal auctions

- Downward distortions: the seller might inefficiently retain the object.
 - This happens when VS are all negative but θ_i is positive for some *i*.
- For symmetric bidders with nondecreasing hazard rate, the allocation rule is efficient conditional on sale.
- For asymmetric bidders, the object might be allocated to a bidder different than the one that values the good the most.
- In the symmetric case, the optimal auction can be implemented by any of the standard auction formats (FPSB, SPSB, English, Dutch) with a reserve price.

Dominant Strategy Implementation

- The first price auction with an optimal reserve price maximizes, in equilibrium, the revenue of the seller.
- The same allocation and revenue can be obtained with a second price auction. However the equilibrium in the second price auction is in dominant strategies!
- Manelli and Vincent (2010) provide conditions under which scf that are BIC can also be implemented in Dominant Strategies.