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Abstract

This paper investigates the optimal allocation of attention towards the dynamic
completion of interrelated projects, where the final payoff is determined by the
set of completed projects and the total attention allocated over time. An allo-
cation policy consists of a stopping decision—determining how much attention
is invest before abandoning the projects—and a timing decision—determining
the order of investment across projects. We establish a partial order in the
set of allocation policies and show that the expected payoff is increases in such
order. Moreover, we provide sufficient conditions for the optimal policy to be
timing-independent. We apply these results to characterize the optimal atten-
tion allocation policy in the canonical problem of two perfectly complementary
projects with an unknown constant rate of completion.

1 Introduction

The development of innovative products often involves completing multiple interme-
diate steps. In some cases, these steps must be completed in a specific order, and the
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problem of an innovator boils down to choosing the intensity of work at each step.
This problem has been extensively studied in the literature on sequential innovation
(e.g. in Gilbert and Katz [2011] and Green and Scotchmer [1995]). However, when
these steps can be completed in any order, the problem becomes more complex, as
there is an additional strategic consideration of the innovator: she must not only de-
cide how intensively to work, but also which steps to prioritize. This dual challenge
remains underexplored in the existing literature, despite its relevance in a wide range
of applications.

In this paper, we introduce a framework that combines optimal timing and stop-
ping decisions. A decision maker (DM) engages in various projects that are completed
through observable breakthroughs, though the exact amount of resources required to
complete each project is unknown. The DM allocates a fixed amount of resources—
attention—per unit of time across projects and must decide when to stop. The final
payoff depends on both the set of completed projects and the total amount of resources
allocated.

Consider two projects that are perfect substitutes: upon completion of one project,
the additional value gained from completing the remaining one is zero, making it
optimal to stop further investments immediately. In this scenario, any resources
allocated to the uncompleted project become effectively wasted, meaning that, in
hindsight of the information obtained, the DM recognizes that a better choice would
have been to allocate all resources solely to the project that was eventually completed.
The only allocation policies that avoid effective wastefulness entirely are those that
allocate resources exclusively to one of the projects. These policies, however, are not
necessarily optimal.

For general interdependence of the projects’ payoffs, we introduce a partial order
of allocation policies based on the concept of effective wastefulness and we show that
policies that induce less effective waste perform better in expectation. This result
provides a structure that allow us to simplify the problem of finding optimal policies.
Furthermore, when considering independent projects that are complements—meaning
that the final payoff is supermodular in the set of projects completed—we show that
the optimal allocation policy is completely free of effective waste. This result is
tight in the sense that when projects are not complements, it is possible to construct
information structures for which the optimal allocation involves effective waste.

We apply these results to the problem of perfect complementary projects with
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uncertain completion rates and find that the DM prioritizes projects based on their
perceived difficulty. When encountering a difficult project is sufficient to render the
entire enterprise unprofitable, the DM prioritizes the project that is perceived to be
more difficult. Conversely, if having at least one easy project is enough to make the
whole enterprise profitable, the DM prioritizes the project that is perceived to be
easier.

Related Literature Weitzman’s and Gittins’ classical work—Weitzman [1979] and
Gittins [1979]—provide a foundational study on timing and stopping rules. Their main
result consist on the construction of indices that indicate the optimal order in which
alternatives should be explored and when the process should be stopped to maximize
expected payoffs. In their framework, the value derived from the exploration process
depends solely on the maximum value among the explored alternatives (or “boxes”). In
contrast, in this paper, we consider a framework that accounts for dependencies across
payoffs, allowing us to adress situation where the value of a successful innovation
depends on the interaction with other successes.

This paper contributes to the literatures on learning and scheduling. In the se-
quential learning literature, a recent series of paper explores the question of how
attention should be allocated across different information sources before making an
irreversible decision. Gossner et al. [2021] study a decision maker that learns about
two substitute alternatives and stops according to a simple rule, focusing on the effect
of directing attention toward one item in the final decision. Nikandrova and Pancs
[2018], Che and Mierendorff [2019], and Mayskaya [2019] study problems of sequential
information acquisition with a Poisson information structure. While Nikandrova and
Pancs [2018] focuses on acquiring information about indenpendent alternatives, Che
and Mierendorff [2019] analyze a framework in which the different sources reveal in-
formation about the same alternative. Mayskaya [2019], on the other hand, considers
a decision maker who acquires information about two potentially independent alter-
natives. Although all these papers focus on information acquisition for an eventual
decision, this paper considers a decision maker who allocates attention to projects
until they are either completed or they decide to stop.

Departing from the Poisson structure, Ke and Villas-boas [2019] study a problem
involving independent information sources, where the DM learns about the state by
observing a Brownian process. Klabjan et al. [2014] study the problem of sequential
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acquisition of information regarding multiple attributes of a signle alternative. Two
papers Liang et al. [2018] and Liang and Mu [2020] compare the performance of
optimal strategies with alternative approaches. Liang et al. [2018] asks the question of
how well a strategy that neglects all dynamic considerations and acquires information
in a myopic way performs compared to the optimal information acquisition strategy.
Liang and Mu [2020] compare efficient information acquisition to what results from
the choices of short-lived agents who do not internalize the externalities of their
actions.

The problem of incentives in the context of complementary innovations has been
extensively studied. For example, Scotchmer and Green [1990] and Ménière [2008]
study optimal inventive requirements for patents in the context of complementary
innovations. Bryan and Lemus [2017] study the direction of innovation in a general
setting that accounts for complementary innovations. In contrast, this paper, focuses
on processes of innovation that involve learning about the difficulty of the projects.

Some complementary innovations are sequential or cumulative. Papers that study
sequential developments include Gilbert and Katz [2011] and Green and Scotchmer
[1995]. Moroni [2019] studies a contracting environment with sequential innovations.
In these papers, the timing of innovation is exogenously given. In contrast, this pa-
per focuses on complementary innovations in which the timing is determined endoge-
nously by the allocation of resources to the projects. To the best of my knowledge, this
paper is the first one to combine an endogenous timing of completion with learning.

The paper shares many key elements with the theory of scheduling in operations
research. This literature is mostly concerned with the problem of specifying the
order in which jobs or tasks should be completed. Although there are papers in
this literature that incorporate uncertainty in the amount of resources that each task
demands, the objective functions are typically different. A classical question in this
literature is how to complete a certain set of tasks in the least possible expected time.
In this paper, instead, the set of tasks that end up being completed is endogenous.

The remainder of the paper is structured as follows: Section 2 introduces the model
and provides some preliminary analysis. Section 3 discusses the optimal allocation
of resources. In Section 4 and Section 5, we present the main results. Finally, in
Section 6, we apply these results to characterize the optimal attention allocation
when projects have a constant but unknown rate of completion.

4



2 Setup

There are two projects, A and B. A decision maker (DM) has a unit of attention per
unit of time and must decide how to allocate this attention between the two projects.
Time is continuous. Let αi(t) denote the amount of attention allocated to project i
at time t. Attention is scarce: αA(t) + αB(t) 6 1 for all t > 0. Project i is completed
when the cumulative attention allocated to it xi(t) :=

∫ t
0
αi(t̃) dt̃ reaches a certain

completion amount τi. These completion amounts τA and τB are random variables
with support in TA and TB respectively, where Ti is a closed subset of the positive
reals.

Upon stopping, the DM receives a reward q(Y ), which depends on the set Y of
completed projects. In addition, the DM incurs costs based on the total attention
allocated to each projects. Specifically, if the DM stops at time T after completing
projects Y , the final payoff is given by q(Y ) − cA · xA(T ) − cB · xB(T ), where ci is
the unit cost of attention for project i. The DM aims to maximize its expected final
payoff.1 The reward function q is assumed to be non-decreasing with respect to the
set inclusion order and is normalized such that the reward of completing no projects
q(∅) is zero.

For expository purposes, we assume that the completion times τA and τB are
jointly continuous, as defined next.2 Let G(xA, xB) := Pr(τA > xA & τB > xB) be
the joint survival function of completion times.

Definition 1. Projects are jointly continuous if there exists a density function f :

R2
+ → R+ such that

G(xA, xB) =

∫ ∞
xB

∫ ∞
xA

f(x̃A, x̃B) dx̃A dx̃B (1)

Allocation Policies

A strategy is a map that indicates the attention allocation for each possible history.
Since all payoff-relevant information in any history consists of (i) the completion
status of each project, (ii) the attention allocated to each uncompleted project, and

1In this model there is no discounting. Thus, the payoff of the DM depends on the total amount
of attention allocated to each project and not the order in which this attention was allocated. The
qualitative features of the solution remain unchanged in a model where the DM discounts the future
as long as the cost of attention allocation is the same for both projects, i.e. cA = cB .

2However, most of the main results do not rely on this assumption.
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(iii) the completion amounts of completed projects, we can, without loss of generality,
focus on allocation policies that are measurable in the payoff-relevant state, defined as
a tuple (Y, x, T ), where Y ⊆ {A,B} indicates the set of completed projects, x ∈ R2

+

is the attention allocated to each project, and T ⊆ R2
+ is the set of completion states

that was not discarded.3

When a project is completed, its completion amount is perfectly revealed. For
an uncompleted project, the DM only knows that the completion amount is larger
than the cumulative attention already allocated. Moreover, we assume without loss of
generality that it is not possible to allocate attention to completed projects. Thus, in
any payoff-relevant state we have that T = TA× TB where Ti is a singleton Ti = {xi}
iff i ∈ Y and Ti = (xi,∞) if i /∈ Y . Note that T is perfectly pinned down by (Y, x),
for which we drop the dependence.

Definition 2. An allocation policy σ = (σA, σB) is a pair of right-continuous func-
tions σi : H → [0, 1] satisfying σA(h) + σB(h) 6 1 for all h ∈ H.

This paper is concerned with finding the allocation policy that maximizes the
expected payoff of the DM. Because there is no reason to backload attention, it is
without loss of optimality to focus on policies that either allocate all attention or no
attention, effectively stopping. Let S denote the set of all such allocation policies.
For any allocation policy σ ∈ S, we define V (σ) as the expected payoff, at time zero,
of the DM that follows policy σ.

Definition 3. For any allocation policy σ ∈ S and set of completed projects Y ⊆
{A,B}, we define stopping regions as

SσY := {x ∈ R2
+ : σ(Y, x) = 0}.

In words, the stopping region indicate the states in which the policy stops allo-
cating attention to the projects. For example, after completing project B, the DM
continues allocating attention to project A until the cumulative attention xA is such
that (xA, τB) ∈ Sσ{B}.

Before any project is completed, a policy σ allocates attention according to σ(∅, x).
For each allocation policy, there is a corresponding first-stage policy α = (αA, αB)

3This simplification holds because the order in which the attention was allocated so far is payoff-
irrelevant.
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which specifies how attention is allocated over time, conditional on that no project is
completed.

3 Optimal allocation policy

In this section, we study the optimal allocation of attention across the two projects.
We begin by studying a simplified version of the problem involving a single project,
which serves as a benchmark. This simpler setting focuses solely on the stopping de-
cision, making it easier to solve. The solution to this benchmark proves to be useful
in characterizing the solution to the more complex two-project problem, which we
approach backwards: we first address the second stage, where one of the projects has
already been completed, and determine the optimal stopping decision for the remain-
ing project. Then, we turn to the first stage, where neither project is completed, to
characterize the optimal allocation of attention between the two projects.

3.1 Benchmark: single-project problem

As a benchmark, we first consider a simplified setting involving a single project. This
setting is defined by three key elements: the reward Π obtained upon completing the
project, the cost c incurred for allocating attention to the project, and a distribution
of completion times characterized by the cumulative distribution function F .

The DM must decide how much attention to allocate to the project at each point
in time. If the DM stops after allocating x units of attention, the final payoff is given
by 1{x>τ} ·Π− c · x, where 1{x>τ} is an indicator function that equals 1 if the project
is completed and 0 otherwise.

As we argued in the previous section, for any history in which the project was
not completed, the only payoff-relevant information is the total amount of attention
allocated to the project so far. Thus, a single-project policy can be defined without loss
of optimality as a map α : R+ → {0, 1} that indicates the attention allocated to the
project as a function of the total cumulative allocation already invested, conditional on
the project not being completed yet. A single-project policy is optimal if it maximizes
the expected continuation payoff of a DM who follows it, for every initial state.
Formally, the expected continuation payoff π of a DM that has already allocated x
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units of attention to the project without completion is defined as

π(x′, x) := [F (x′)− F (x)] · Π− c ·W (x′, x)

Where W (x′, x) := E [min{τ, x′} − x | τ > x], is the expected additional attention
the DM allocates when they have already allocated x and are willing to allocate
up to x′. The problem then reduces to choosing the stopping point x′ that maxi-
mizes the expected continuation payoff. We define the continuation value as v(x) :=

supx′>x π(x′, x).
In making a stopping decision, the DM trades off the probability of eventually

completing the project (F (x′) − F (x)) against the expected remaining cost of at-
tention, which is proportional to the expected remaining attention to be allocated,
W (x′, x).

Given that the action of the DM facing a single-project problem is binary—either
to stop or to continue allocating attention—it can be characterized by the states at
which the DM would choose to stop.

Definition 4. We define the stopping set of the single-project problem as S∗ :=

{ x ∈ R+ : v(x) = 0 }. The strict stopping set of the project is defined as
S∗∗ := {x ∈ R : ∀x′ > x, π(x′, x) < 0}.

Naturally, stopping sets and optimal single-project policies are related. We for-
malize the relationship in the following remark.

Remark 1. For a single-project problem (Π, c, F ), the single-project policy α is opti-
mal iff α(x) = 0 for all x ∈ S∗∗ and α(x) = 1 for all x /∈ S∗.

The next result establishes basic comparative statics for single-project problems.
Specifically, Proposition 1 asserts that if the reward Π is higher—relative to the cost c
of attention—and the hazard rate of project completion is higher, then the DM’s opti-
mal stopping set shrinks, implying that the DM would continue to allocate attention
for longer to the project for every initial state.

Proposition 1. Consider two single-project problems (Π, c, F ) and (Π̂, ĉ, F̂ ) with
respective stopping sets S∗ and Ŝ∗. If Π̂/ĉ > Π/c and F hazard-rate dominates F̂ ,
then Ŝ∗ ⊆ S∗.

Proof. In Appendix A.1.
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This intuitive result is based on proving that if it is profitable for the DM to
continue allocating attention to a project (Π, c, F ), then it will also be profitable to
do so for a project (Π̂, ĉ, F̂ ). Furthermore, when projects have decreasing hazard
rate, the optimal allocation policy involves continuing to allocate attention as long as
the hazard rate remains higher than the c/Π, which ensures that the expected flow
reward exceeds the cost of attention.

Example 1. Suppose that the hazard rate h = F ′/(1− F ) is continuous and strictly
decreasing. Then, S∗ = {x ∈ R+ : h(x) · Π > c}. Denoting h̄ the limit of h(x) as
x→∞, which exists since h is decreasing and bounded below by zero, we get that S∗

is as follows:

S∗ =


∅ if c/Π 6 h̄

R+ if c/Π > h(0)

[h−1(c/Π),∞) if c/Π ∈ (h̄, h(0))

3.2 Two-project problem

We now turn to the studying the two-project problem, which is characterized by the
joint distribution of completion times, represented by the survival funciton G, the
reward function q, and the attention cost parameters cA and cB. As is standard, we
approach the problem backwards, starting from states where one of the projects has
already been completed.

Second-stage policies

In this section, we study the continuation problem face by the DM after one of the
projects is completed. Once project i is completed, the DM’s decision boils down to
determining when to stop allocating attention to the remaining project. A second-
stage policy, therfore, must specify the stopping decision of the DM for each possible
realization of the completion time of the completed project.

Remark 2. For a two-project problem, the optimal attention allocation after a history
where project A was completed at τA and xB attention was allocated to project B
coincides with the optimal allocation of attention of single-project problem (Π, c, F )

where Π = q({A,B})− q({A}), c = cB, and F (x) = 1−G1(τA, x)/G1(τA, 0).

9



τA

S∗{A}

xA

x
B

Figure 1: Second-stage policy

Intuitively, once a project is completed, the continuation problem resembles a
single-project problem, where the payoff for completing the remaining project j is the
marginal payoff derived from its completion, q({A,B})− q({i}), and the distribution
of completion times is adjusted to reflect the conditional distribution based on the
information gained from the completion of the first project.

For each realization of τj, we denote by vi(xi | τj) the continuation value and
stopping set s∗i (τj) and a strict stopping set s∗∗i (τj) according to the solution charac-
terized in Section 3.1. In this way, we can define the optimal second stage stopping
regions as

S∗{i} := { (xA, xB) ∈ R2
+ : x−i ∈ s∗−i(xi) }

Figure 1 illustrates the second-stage stopping region S∗{A}. In the figure, if project
A was completed in the first stage at τA, the optimal second-stage policy would involve
allocating attention to project B, moving vertically along the yellow line. The DM
would either complete project B or stop upon reaching the red area, S∗{A}.

First-stage policies

Before either project is completed, the DM must decide how to allocate a unit of
attention between the two projects.

Definition 5. A first-stage policy α = (αA, αB) consists of a pair of functions αi :
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R+ → [0, 1] such that αA(t) + αB(t) 6 1.

As we argued in Section 2, we can, without loss of generality, focus on first-stage
policies that do not waste time, i.e. policies α for which there exists a time Tα ∈ [0,∞]

such that αA(t) + αB(t) = 1 for t 6 Tα and αA(t) + αB(t) = 0 for t > Tα.4

For a given first-stage policy α and time t, the cumulative attention allocated to
project i by time t in the absence of any project completion is denoted by

xαi (t) :=

∫ t

0

αi(t̃) dt̃.

We use xα(t) to denote the vector (xαA(t), xαB(t)). Let A represent the set of all first-
stage policies and let Xα := xα(Tα) be the first-stage stopping point of first-stage
policy α, i.e. the amount of attention that the DM allocates to each project before
stopping, assuming no project is completed.

Given a first-stage policy α ∈ A, the set of completion times Ω can be partitioned
in three regions, based on which project is completed first by a DM that follows first-
stage policy α. Let Lα := {x ∈ R2

+ : x = xα(t), t > 0} be the path of cumulative
attention, i.e. the set of points in R2

+ that can be reached over time by following
policy α.

Uα
i := {τ ∈ Ω : τi > xi & τ−i 6 x−i for some x ∈ Lα}

Figure 2 illustrates an arbitrary policy path Lα and the regions Uα
i for an arbitrary

first stage policy α ∈ A. The DM that follows first-stage policy α completes project
i in the first stage iff τ ∈ Uα

i . If τ > Xα, then τ is not in Uα
A or Uα

B and the DM does
not complete any project before stopping in the first stage.

To find the optimal allocation policies, we focus on the ones that present optimal
continuation in the second stage. Let σα be the policy that prescribes first-stage
policy α in the first stage and optimal continuation in the second stage.

Proposition 2. When projects are jointly continuous, the value V (σα) can be ex-
pressed as follows:

V (σα) =

∫ Tα

0

G(xα(t)) ·
∑
i=A,B

αi(t) ·
[
Hi(x

α(t)) · vj(xαj (t) | xαi (t))− ci
]
dt (2)

4This is because there is no benefit for the DM in delaying the allocation of attention. This fact
holds true even when the DM discounts future payoffs.
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Figure 2: Sets Uα
A and Uα

B for a first stage policy α.

Where Hi(x) := − ∂
∂xi

logG(x).

In Equation 2, G(xα(t)) represents the probability that the DM reaches time t
while still in the first stage. If the DM is indeed in the first stage at time t, they
allocate αi(t) units of attention to project i. The term in square brackets represents
the net expected flow payoff from allocating attention to project i during the first
stage, as Hi captures the hazard rate for project i given that xi attention has been
allocated to the project, xj attention was allocated to project j, and no project was
completed so far.

4 Effective waste

To address the question of optimal policies, we first define an order over the space
of first-stage policies. Then, we show that the expected payoff V (σα) of the DM is
increasing in this order. By constructing this order, we are able to rule out suboptimal
policies, thereby bringing us closer to identifying the optimal policy.

Definition 6. A first-stage policy α̂ is less wasteful than α (denoted α̂ � α) iff

1. α and α̂ share the same first-stage stopping point,i.e. Xα = X α̂.

2.
[
U α̂
i \ Uα

i

]
∩ S∗{−i} = ∅ for i = {A,B}.
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α̂

α

X

S∗{A}

S∗{B}

τ
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x
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Figure 3: First-stage policy α̂ dominates first-stage policy
α.

For a first-stage policy α̂ to dominate a policy α, two conditions must be met.
First, both policies must have the same stopping point. Second, if there is a realization
τ ∈ R2

+ such that α̂ completes project i and α completes project −i, then it must be
that τ is not in S∗{−i}.

5

In Figure 3, we observe the paths of two first-stage policies, α̂ and α. Moreover,
notice that the two policies have the same stopping point X = Xα = X α̂. The green
area in between the curves, where α̂ allocates relative more attention to project A,
does not intersect S∗A. Likewise, the yellow area, where α̂ allocates relatively more to
project B, does not intersect S∗B. Thus, α̂ is less wasteful than α.

As it turns out, policies that are less wasteful yield a higher expected payoff than
policy α, as formalized by the following result:

Theorem 1. The expected payoff from using first-stage policies with optimal second-
stage continuation is increasing in the effective waste partial order, i.e.

α̂ � α ⇒ V (σα̂) > V (σα).

5Note that this definition uses the optimal second-stage policy given by the stopping regions
S∗{A} and S∗{B}. A similar definition can be constructed for arbitrary second-stage policies. With
this alternative definition, it is possible to order policies with suboptimal second stage. Since,
ultimately, we are interested in optimal policies—that involve optimality in the second stage—we
refrain from this more general approach.
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Proof. In Appendix B.1.

The key idea behind the proof is to construct a potentially sub-optimal second-
stage stopping policy such that, when α̂ is used in combination with this second-stage
policy, the outcome is equivalent as using policy α with the optimal continuation in the
second stage for every realization of completion times τ ∈ Ω.6 Note that Proposition
1 is vacuously true for perfect substitutes (where q({A,B}) = q({A}) = q({B}))
because in such cases, S∗A = S∗B = R2

+ and, therefore, there are no distinct policies α̂
and α such that α̂ � α.

4.1 Waste-free policies

In this section, we focus on the subset of waste-free policies, which are policies that are
less wasteful than any other policy. We argue that identifying the waste-free policy
that yields maximal expected payoff can be obtained using standard optimization
techniques, since the expected payoff of such policies is pinned down by their stopping
point. In ??, we present sufficient conditions under which the optimal first-stage
policy is guaranteed to be waste-free.

Definition 7. An first-stage allocation policy α is waste-free if and only if for any
τ 6 Xα such that τ ∈ S∗{i} it holds that that τ ∈ Uα

i , for i = A,B.

Naturally, a waste-free policy is not dominated by any other policy. The waste-
free property is illustrated in Figure 4. The dashed and dotted lines represent the
paths of first-stage policies α̂ and α. Note that τ is lower than the stopping point
X of policy α̂. Additionally, τ lies on S∗{A}, but not on U α̂

A. Thus, policy α̂ is not
waste-free. Policy α, on the other hand, is waste-free. Any two policies that are
waste-free and have the same stopping point induce expected payoff, as formalized in
the following corollary.

Corollary 1. If α̂ and α are waste-free and Xα = X α̂, then V (σα) = V (σα̂).

This corollary follows directly from Theorem 1: when two policies are waste-free
and have the same stopping point, they are less wasteful than each other. Thus,

6Importantly, the same construction also applies to DMs who don’t maximize expected payoffs.
As long as the DM is only concerned with the distribution of payoffs, and not, for example, the
order in which projects are completed, a similar construction works.
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(a) Waste-free policies

X
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S∗{B}
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(b) Encouraging projects.

Figure 4: The red and blue areas represent the optimal second-stage
stopping points. The dashed and dotted lines represent the paths of
different first-stage policies.

they must yield the same expected payoff. This reasoning implies that, rather than
computing the value V (σα) for each waste-free first-stage policy α, it is sufficient to
compute the value for each associated stopping point. This simplification is particu-
larly useful when dealing with encouraging projects, as defined next.

Definition 8. Projects are encouraging (discouraging) if c, q, and G are such that
inf s∗i (τj) is decreasing (increasing) in τj for i = A,B.

For any stopping point X ∈ R2
+ and project i, let σXi be a policy with optimal

stopping in the second stage, and first stage allocation given by α where αi = 1 for
t < Xi and αi = 0 for t ∈ (Xi, Xi + Xj). When the projects are jointly continuous,
we can apply Equation (2) to express V (σXi ) as:

V (σXi ) =

∫ Xi

0

G(x̃, 0) · [ Hi(x̃, 0) · vj(0|x̃)− c ] dx̃

+

∫ Xj

0

G(Xi, x̃j) · [ Hj(Xi, x̃j) · vi(Xi|x̃j)− c ] dx̃j

(3)

Corollary 2. If projects are encouraging, then V (σα) = V (σX
α

A ) = V (σX
α

B ) for any
waste-free policy α.
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Proof. This result relies on first noticing that when projects are encouraging, a policy
α is waste-free if and only if Xα

i < S∗i (X
α
−i) for i = A,B. Then, applying Corollary 1,

we obtain that the value of a first-stage policy α must be the same as the extreme
policies, since these must also be waste-free.

The problem of determining the optimal stopping point, given a specific alloca-
tion order, maxX∈R2

+
V (σXi ), is comparatively easier to solve than the more general

problem of finding the overall optimal policy, maxα∈A V (σα). This is because stan-
dard optimization techniques can be applied with Equation (3). While Theorem 1
allows us to rule out policies that are less wasteful than waste-free policies, it does
not necessarily imply that the optimal policy must be waste-free.

For instance, consider the scenario where projects are perfect substitutes, i.e.
q({A}) = q({B}) = q({A,B}). In this case, there is no additional value to be gained
in the second stage, making it optimal for the DM to stop immediately after the first
project is completed. Thus, it is possible to show that the only policy that is waste
free involves stopping allocating attention immediately at time zero. This, however,
is not optimal for every possible parameters. In the next example, we obtain the
optimal policy in the case of perfect substitutes.

Example 2. Consider perfect substitutes, i.e. q({A}) = q({B}) = q({A,B}) = Q,
and let the projects be independent and with identically distributed completion times,
i.e. there is a function F such that G(xA, xB) = (1−F (xA))·(1−F (xB)). Moreover, let
the hazard rate of completion times h(x) := −F ′(x)/(1−F (x)) be strictly decreasing,
with h(0) > c/Q and limx→∞ h(x) < c/Q. Then, S∗{A} = S∗{B} = R2

+ and the unique
optimal first stage policy is:

αA(t) = αB(t) =

{
0.5 t < 2 · h−1(c/Q)

0 t > 2 · h−1(c/Q)

Intuitively, fixing the time that the DM is willing to work on the projects, the
DM aims, for perfect substitutes, to minimize the expected time to complete one of
them. With decreasing hazard rates, this involves always allocating attention to the
project with the highest hazard rate. Since both projects have the same distribution,
the optimal policy is to split attention equally betweem them. The DM stops when
it is not profitable to continue, which occurs when the hazard rates reach c/Q.
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In the next section, we examine conditions that ensure the optimal policy is waste-
free.

5 Optimality of waste-free policies

In this section, we aim to identify conditions under which the optimal policy is waste-
free. There are two aspects of the relationship between the projects: the impact
of project completion on the final payoff—represented by the function q—and the
information the DM obtains through resource allocation—specifically how much the
DM learns about the completion time of project j by allocating attention to project
i.

In this section, we analize the case where the informational channel is entirely
shut down and provide the weakest condition on the payoff function that guarantees
a frustration-free optimal policy. In Appendix D, we relax the information condition
and establish a sufficient condition on information that, together with the condition
on payoffs, guarantees a frustration-free optimal policy.

Definition 9. The projects are independent if τA and τB are independent random
variables, i.e. ther exists FA and FB such that

S(xA, xB) = (1− FA(xA))(1− FB(XB))

For independent projects, there is no informational spillover between them: allo-
cating attention to project A does not reveal any information about the completion
time of project B, and vice versa. In the case of independent projects, the second-
stage continuation value vi(x|τj) and the stopping sets s∗i (τj) are constant in the
completion time τj. Thus, for independent projects, we can drop the dependency and
denote vi(x) as the value of a single project problem with payoff q({A,B})−q({−i}),
cost ci and distribution given by Fi and s∗i the corresponding stopping set.

Note that a waste-free policy is one in which the stopping point is below the
infimum of the stopping regions. Formally,

Remark 3. For independent projects, σα is waste-free if and only if Xα
i 6 inf s∗i for

i = A,B.

Since there are no informational spillovers, the projects are related only through
the payoff that the DM derives from completing them, which is determined by the
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function q. The complementarity between the projects is captured by the supermod-
ularity of this function.

Definition 10. The projects are complements if the function q is supermodular, that
is,

q({A}) + q({B}) 6 q({A,B})

The projects are perfect complements if q({A}) = q({B}) = 0.

It turns out that complementarity and independence of the projects ensures a
waste-free optimal policy, as is formalized in the following theorem.

Theorem 2. If projects are complements and independent then there is an optimal
policy that is waste-free.

Proof. in Appendix C.

To understand the intuition for this result, it is important to consider the incen-
tives given by the marginal value of completing a project relative to stopping in each
of the stages. In the case of perfect complements, the value of completing a project in
the second-stage is q({A,B}). The value obtained when completing project i in the
first stage, instead, is vj(xj), which is always lower. Thus, it is possible to show that
the stopping region without any project completion, S∗∅ , is a superset of S∗{A} ∪ S∗{B},
which implies that the optimal policy must be waste-free.

However, this argument does not hold in the case of imperfect complements, as
the marginal value of completing project i in the second stage relative to stopping,
q({A,B}) − q({−i}), is not always greater than the value obtained by completing
the same project in the first stage relative to stopping, q({i}) + vj(xj). Instead, the
key to proving this result lies in showing that if the DM finds it optimal to allocate
attention to project i in the first stage beyond the second-stage stopping region, then
continuing to allocate attention to project j is also optimal.

Theorem 2 provides a sufficient condition to ensure a frustration-free optimal pol-
icy. Moreover, the supermodularity of q is the weakest condition on q that guarantees
this: When q is not supermodular, it is possible to construct a survival rate function
G such that the projects are independent and no optimal policy is frustration-free.
Moreover, one can always construct G so that the hazard rate for each project is
decreasing. This result is formalized in the following proposition.
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Proposition 3. If projects are not complements, there exist a survival function G

such that the projects are independent, the hazard rate Hi(x) of the projects is de-
creasing, and

max
α∈A

V (σα) > max
X∈R2

+

V (sXi ) for i = A,B

.

Proof. in Appendix C.2.

6 Parametric application

In previous sections, we provide tools to analyze optimal resource allocation for in-
terrelated projects in a general setup with very little structure in the distribution of
completion times. In this section, we illustrate the applicability of these methods in
a more cannonical, structured setting.

Consider two projects, each of which can be either “difficult” or “easy”, with hazard
rates λL and λH , respectively. When the DM allocates attention α to project i, he
completes the project at a rate α · λi, where λi is the hazard rate of the project. The
difficulty of each project is randomly and independently determined, with project i
having an ex-ante probability pi of being easy.

This setup fits our previous framework, where the joint survival rate can be written
as

G(xA, xB) =
∏
i=A,B

pie
−λHxi + (1− pi)e−λLxi

Moreover, we assume that the projects are perfect complements, meaning that the
reward of the DM is zero if only one project is completed. The DM receives a reward
q({A,B}) = Q > 0 only if both projects are completed.

6.1 Optimal allocation

If the reward Q is sufficiently high (Q > 2 · c/λL), the DM completes both projects
even if they are both known to be difficult. Thus, in this case, the DM never find it
optimal to stop, regardless of uncertainty. On the other hand, if Q < 2 · c/λH , the
DM stops allocating attention immediately even if both projects were known to be

19



easy. Thus, in that case, the DM would stop immediately even if there is uncertainty
about the projects’ difficulty. The more interesting case arises when the reward Q

falls in between these two extremes, leading to the question of whether the DM would
continue allocating attention if they knew that one if the projects was difficult and
the other one easy.

Definition 11. The projects are cost-effective when assorted when

Q >
c

λH
+

c

λL

When projects are cost-effective when assorted, it is optimal to complete both
projects when it is known that one is difficult and the other one easy. Moreover,
if the difficulty of the projects is known, the order in which the DM allocates the
attention is irrelevant. However, with uncertainty, the order affects the final payoff of
the DM because the flow of information about the difficulty of the projects is affected
by how attention is allocated. Let i denote the least promising project and j the
most promising one, meaning that the prior probabilities of the projects being easy
are ordered as pi < pj.

The following proposition characterizes the optimal allocation of attention for the
case of intermediate rewards.

Proposition 4. Assume Q ∈ [2c/λH , 2c/λL]. Then,

• If the projects are not cost-effective when assorted, it is efficient to allocate
attention only to the least promising project in the first stage. That is, for any
optimal first-stage policy α∗,

pi < pj ⇒ Xα∗

j = 0.

• If the projects are cost-effective when assorted, it is efficient to allocate more
attention to the most promising project in the first stage. That is, for any
optimal first-stage policy α∗,

pi < pj ⇒ Xα∗

i 6 Xα∗

j .

Proof. in Appendix E.
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Figure 5: Projects in belief space.

The first part of Proposition 4 states that when the rewards are sufficiently low
relative to the costs—i.e., when Q/c is lower than the expected completion time of
both a difficult and an easy project—the optimal allocation of attention involves
starting with the least promising project. This case is depicted in Figure 5a. In the
figure, the horizontal axis represents the probability that project A is easy, while the
vertical axis represents the same for project B. The red curve represents the boundry
where the DM would decide to stop allocating attention to the projects. Note that
the top-left and bottom-right corners lie below this boundry, which is consistent with
the projects being not cost-effective when assorted.

If the initial beliefs are at the point pa, the DM would optimally allocate attention
to project A (the least promising one) first. As the DM continues allocating attention
to project A without completing it, their beliefs become more pesimistic. The beliefs
evolve along the arrow until they reach the boundary, at which point the DM stops.
If, instead, the initial beliefs are at point pb, the DM will start instead allocating
attention to project B first, stopping when beliefs reach p(X∗b ).

The second part of Proposition 4 states that when the rewards are sufficiently high
relative to the costs—i.e., when Q/c is greater than the expected completion time of
both a difficult and an easy project—the optimal allocation of attention involves giving
more attention to the most promising project in the first stage. This case is depicted
in Figure 5b.
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In the figure, we label p◦ the belief at the intersection of the stopping boundary
and the 45-degree line. When one of the initial beliefs is below p◦, such as at points
pc and pd, the DM optimally allocates attention to the most promising project before
stopping at the boundary. If the initial belief for both projects is higher than p◦,
the DM allocates attention to both projects during the first stage until both projects
reach the belief p◦. This can only be achieved by allocating more attention to the
most promising project.

7 Conclusion

In this paper, we examined the problem faced by a resource-constrained decision
maker who allocates attention across multiple interrelated projects. The timing of
these projects affects how information about their difficulty is obtained, which in turn
shapes the optimal stopping decision.

We developed a framework for analyzing the problem of dynamic attention allo-
cation and showed that—holding the cumulative attention allocated to each project
constant, and conditional on no project completion—it is optimal to allocate attention
in a way that minimizes effective waste, defined as situations where the DM wishes
they had stopped allocating attention to a project earlier.

We showed how, in general, is possible to characterize optimal waste-free allocation
policies. However, the overall optimal allocation policy may not always be waste-
free. We then provided conditions for the optimal allocation policy to be waste-free.
Specifically, we proved that when the difficulties of the projects is independent, the
weakest condition that guarantees a waste-free optimal policy is complemetarity in
payoffs.

We applied these findings to the case of perfect complementary projects with un-
known constant completion rates. The solution involves prioritizing the least promis-
ing project when stakes are relatively low, and the most promising project when the
stakes are high. This solution coincides with the fastest way to obtain information
about an underlying decision-relevant state.
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Ménière, Y. (2008). Patent law and complementary innovations. European Economic
Review 52 (7), 1125–1139.

23



Milgrom, P. and C. Shannon (1994). Monotone comparative statics. Econometrica,
157–180.

Moroni, S. (2019). Experimentation in Organizations.

Nikandrova, A. and R. Pancs (2018). Dynamic project selection. Theoretical Eco-
nomics 13 (1), 115–143.

Scotchmer, S. and J. Green (1990). Novelty and Disclosure in Patent Law. RAND
Journal of Economics 21 (1), 131–146.

Weitzman, M. L. (1979). Optimal search for the best alternative. Econometrica 47 (3),
641–654.

A Omitted Proofs of Section 2

A.1 Proof of Proposition 1

Fixing an initial an state x ∈ R+. For any random variable with CDF H and support
in R+ and parameters B̃, c̃ ∈ R+, let

x∗(H,B, c) := arg max
x′>x

[H(x′)−H(x)] · B̃ − c̃ ·
∫ x′

x

[1−H(x̃)] dx̃

Claim 1. Let F and F̂ be two absolutely continuous distributions such that F domi-
nates F̂ in the hazard rate order and B, B̂, c, ĉ ∈ R+ such that B/c > B̂/ĉ. Then

x∗(F,B, c) >SSO x
∗(F̂ , B̂, ĉ).

Where >SSO indicates strong set order.

Proof. Fix x ∈ R+ and define π : {0, 1} × [x,∞)→ R+ as follows:

π(1, x′) := [F (x′)− F (x)] ·B − c ·
∫ x′

x

[1− F (x̃)] dx̃

π(0, x′) := [F̂ (x′)− F̂ (x)] · B̂ − ĉ ·
∫ x′

x

[1− F̂ (x̃)] dx̃
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We will show that the functon π satisfies the Milgrom-Shannon single-crossing
condition, meaning that for any y, y′ ∈ R+ satisfying y′ > y > x,

π(0, y′)− π(0, y) > 0 ⇒ π(1, y′)− π(1, y) > 0

First, note that any cdf H of an absolutely continuous random variable can be written
as

H(y) = 1− e−
∫ y
−∞ hH(ỹ) dỹ

where hH(ỹ) := H ′(ỹ)/(1−H(ỹ)) represents the hazard rate. Thus, for any absolutely
continuous random variable with cdf H and costants B̃, c̃ ∈ R+

[H(y′)−H(y)] · B̃ − c̃ ·
∫ y′

y

[1−H(x̃)] dx̃ > 0

⇔ H(y′)−H(y)

1−H(y)
· B̃ − c̃ ·

∫ y′

y

1−H(x̃)

1−H(y)
dx̃ > 0

⇔
[
1− 1−H(y′)

1−H(y)

]
· B̃ − c̃ ·

∫ y′

y

1−H(x̃)

1−H(y)
dx̃ > 0

⇔
[
1− e−

∫ y′
y hH(ỹ) dỹ

]
· B̃ − c̃ ·

∫ y′

y

e−
∫ x̃
y hH(x̂) dx̂ dx̃ > 0

Thus, for any y′ > y > x,

π(0, y′)− π(0, y) > 0 ⇔
[
1− e−

∫ y′
y hF̃ (ỹ) dỹ

]
· B̃ − c̃ ·

∫ y′

y

e−
∫ x̃
y hF̃ (x̂) dx̂ dx̃ > 0

⇒
[
1− e−

∫ y′
y hF (ỹ) dỹ

]
· B̃ − c̃ ·

∫ y′

y

e−
∫ x̃
y hF (x̂) dx̂ dx̃ > 0

⇒
[
1− e−

∫ y′
y hF (ỹ) dỹ

]
·B − c ·

∫ y′

y

e−
∫ x̃
y hF (x̂) dx̂ dx̃ > 0

⇔ π(1, y′)− π(1, y) > 0

The first implication holds since hF (x) > hF̃ (x) for all x ∈ R+ and the second one

because B/c > B̃/c̃ and 1− e−
∫ y′
y hF (ỹ) dỹ > 0. Applying Theorem 4 in Milgrom and

Shannon [1994], we obtain the desired result.
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Using the strong set order, we see that if x /∈ Ŝ∗, meaning that x /∈ x∗(F̂ , B̂, ĉ), it
must be that x /∈ x∗(F,B, c) or x /∈ S∗, which means that S∗ ⊆ Ŝ∗.

Claim 2. Fix B, c ∈ R+ and a CDF H.

y∗(x) := arg max
y>x

[H(y)−H(x)] ·B − c ·
∫ y

x

[1−H(x̃)] dx̃

is increasing in the strong set order.

Proof. Notice that the objective [H(y) − H(x)] · B − c ·
∫ y
x

[1 − H(x̃)] dx̃ satisfies
increasing differences in (x, y), which implies that it satisfies Milgrom-Shannon Single
Crossing Condition. Applying Theorem 4 from Milgrom and Shannon [1994], we
obtain the desired result.

B Proofs of Section 4

B.1 Proof of Theorem 1

Proof. Consider first-stage policies α̂, α ∈ A such that α̂ � α. We will construct a
suboptimal second-stage stopping regions Ŝ{A} and Ŝ{B} such that α̂ in combination
with the suboptimal continuation yields the same payoff as the policy σα for every
realization of completion times τ ∈ R2

+.
Let Ŝ{A} = S∗{A} \ (U α̂

A ∩Uα
B) and Ŝ{B} = S∗{B} \ (U α̂

B ∩Uα
A) and let σ̂ be the policy

that uses first-stage allocation according to α̂ and stops at Ŝ{A}, Ŝ{B} in the second
stage. We will show that, for every realization of τ , the policies σ̂ and σα produce
the same final payoff. Thus, V (sα̂) > V (σ̂) = V (σα), where the first inequality holds
by optimality in the second stage.

Case 1: τ > Xα. In this case, policy σα completes no project before stopping.
Since α̂ � α, it must be that X α̂ = Xα > τ , thus σ̂ also fails to complete a project in
the first stage. The final payoff from policies σα and σ̂ is therefore −cA ·Xα

A−cB ·Xα
B.

Case 2: τ ∈ Uα
A. In this case, σα completes project A in the first stage. Let

Lα2 = {x ∈ Uα
A : xA = τA & xB < τB}
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Note that σα completes B in the second stage if and only if Lα2 ∩ S∗{A} = ∅. In
this case, the final payoff for σα is q({A,B}) − cA · τA − cB · τB. If Lα2 ∩ S∗{A} 6= ∅,
policy σα does not complete project B in the second stage and the final payoff is
q({A})− cA · τA − cB · xB where xB = inf{xB : (τA, xB) ∈ Lα2 ∩ S∗{A}}.

Case 2.1: τ ∈ Uα
A ∩ U α̂

A. In this case, policy σ̂ also completes project A in the first
stage. We will show that Lα2 ∩ S∗{A} = Lα̂2 ∩ Ŝ{A}.

Consider x ∈ Lα2 ∩ S∗{A}. First, we show that x ∈ U α̂
A. Towards a contradiction,

assume that x /∈ U α̂
A. Then, because xA = τA < X α̂

A, it must be that x ∈ U α̂
B.

Therefore, x ∈ Uα
A ∩ U α̂

B, which implies that x /∈ S∗{A} since α̂ � α, which completes
the contradiction. Because xA = τA, xB < τB and x ∈ U α̂

A, then x ∈ Lα̂2 .
Next, we show that x ∈ Ŝ{A}. For this, we already by assumption have that

x ∈ S∗{A}. It remains to show that x /∈ U α̂
A ∩ Uα

B, which holds since x ∈ Uα
A and

therefore x /∈ Uα
B.

Thus, we proved so far that Lα2∩S∗{A} ⊆ Lα̂2∩Ŝ{A}. For the other direction, consider
x ∈ Lα̂2 ∩ Ŝ{A}. First, we show that x ∈ Uα

A. Suppose, towards a contradiction, that
x /∈ Uα

A. Then, because xA = τA < X α̂
A, it must be that x ∈ Uα

B.
Next, we prove that x ∈ S∗{A}. This is an immediate consequence of x ∈ Ŝ{A} ⊆

S∗{A}. Thus, we proved that Lα̂2 ∩ Ŝ{A} ⊆ Lα2 ∩ S∗{A} which, together with the previous
result, proves the equality.

Thus, the final payoff is the same for σ̂ and σα:

q({A,B})− cA · τA − cB · τB when Lα2 ∩ S∗{A} = ∅

q({A})− cA · τA − cB · xB when Lα2 ∩ S∗{A} 6= ∅

Case 2.2: τ ∈ Uα
A ∩ U α̂

B. In this case, σ̂ completes project B first. We will show
that σ̂ must complete project A in the second stage and sα completes project B in
the second stage. Thus, both policies complete both projects, and their final payoff
is q({A,B})− cA · τA − cB · τB.

Suppose by contradiction that σ̂ doesn’t complete project A in the second stage.
This means that there exists an xA < τA such that (xA, τB) ∈ U α̂

B ∩ Ŝ{B}. However,
τ ∈ Uα

A implies that (xA, τB) must be in Uα
{A} as well. Therefore, x ∈ Uα

A ∩U α̂
B, which

means that x /∈ Ŝ{B}, a contradiction.
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Case 3 τ ∈ Uα
B. This case is symmetric to Case 2.

With these three cases, we show that the payoff yield by σα and σ̂ is the same
with probability one, which means that V (σα) = V (σ̂), finishi

C Proof of Theorem 2

To prove Theorem 2, we proceed as follows. We begin by assuming the existence of
an optimal first-stage policy α. The first part of the proof, Proposition 5, consist
on obtaining an upper bound on the second-stage value of the projects at the first-
stage stopping point of α. Next, we examine the last point at which an optimal
first-stage policy would cross a stopping region, and show that the existence of such
point generates a contradiction. We do so by apply Proposition 1 to identify other
first-stage policies that dominate α and hence must also be optimal. This proves
that an optimal first-stage policy with a finite stopping point cannot cross a stopping
region, and therefore is frustration-free.

Proposition 5. Assume that projects are independent and complements. Let α be
an optimal first-stage policy. Then,

vi(X
α) 6 q({A,B})− q({A})− q({B}) for i = A,B

Proof. Let s∗i be the stopping set of the single project problem with payoff q({A,B})−
q{−i}, cost ci, and distribution given by cdf Fi and let x̄i be the point at which the DM
optimally stops if he completes the project j exactly atXα, i.e. x̄i := inf [Xα

i ,∞)∩s∗i .7

We can write the second-stage continuation payoff of the DM exactly at Xα as

P · [q({A,B})− q({j})]−K (4)

Where P := Pr(τi < x̄i | τi > Xα
i ) is the conditional probability that the DM

completes project i in the second stage and K := ci · E[min{τi, x̄i} −Xα
i | τi > Xα

i }]
the second stage expected cost.

Assume, towards a contradiction, that vi(Xα) > q({A,B}) − q({A}) − q({B}).
7with the usual convention that the infimum is infinite if for an empty set.
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Then, using Equation (4),

P · [q({A,B})− q({j})]−K > q({i, j})− q({i})− q({j})

Adding and subtracting P · q({i}) on the left-hand-side, we get

P · [q({i, j})− q({j})− q({i})] + P · q({i})−K > q({i, j})− q({i})− q({j})

Thus, by rearranging, we get

P · q({i})−K > [1− P ] · [q({A,B})− q({A})− q({B})] > 0

Where the second inequality holds since projects are complements. Note that the
strict inequality implies that P is positive, which means that x̄i > Xα

i .
P · q({i})−K > 0 contradicts the optimality of policy σα: consider the DM that

follows policy σα and reaches Xα in the first stage, i.e. without completing any of the
projects. At this point the policy σα would indicate him to stop. Instead, the DM
can do better by disregarding project j and continuing allocating attention to project
i until completing it or hitting x̄i, what would have a positive expected continuation
value P · q({i})−K.

Theorem 2 If projects are complements and independent, then there is an optimal
first-stage strategy that is waste-free.

Proof. Let si := inf(s∗∗i ). We will show that any optimal first-stage policy α must
satisfy Xα

i 6 si. This, combined with the independence assumption and Corollary 2,
implies that any optimal policy is waste-free.

Let α be an optimal first-stage policy. If Xα
i 6 si for i = A,B, then α is waste-free

and the proof is complete.
Suppose instead that Xα

i > si for at least one of the projects. Let t̂ be the last
time at which the path of α is in one of the stopping regions, i.e.

t̂ = sup { t ∈ R : xα(t) ∈ S∗∗A ∪ S∗∗B }

Note that Xα
i > si > 0. This, together with the fact that S∗∗i is open, implies

that t̂ must be strictly greater than zero. Moreover, since S∗∗i a finite union of open
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sets, one of the following cases must hold, depending on which stopping region the
first-stage policy α crosses last.

Case i. First-stage policy α crosses stopping region of project B last, i.e. there
exists an ε̄ > 0 such that xα(t̂− ε) ∈ SB ∩ ScA for all ε ∈ (0, ε̄).

Case ii. First-stage policy α crosses stopping region of project B last, i.e. there
exists an ε̄ > 0 such that xα(t̂− ε) ∈ SA ∩ ScB for all ε ∈ (0, ε̄)

Case iii. First-stage policy α crosses both stopping regions last, i.e. there
exists an ε̄ > 0 such that xα(t̂− ε) ∈ SA ∩ SB for all ε ∈ (0, ε̄).

We will show that for each of these cases we can arrive to a contradiction, and thus
it cannot be the case that Xα

i > si for neither of the projects.

• Case (i) [case (ii) is symmetric.]

Take some ε̂ ∈ (0, ε̄). We define the first-stage policy α̂ that has the same
stopping point as α, is equivalent to α before t̂− ε̂ and then allocates attention
first to project A. Formally, let t̃ := t̂− ε̂+Xα

A − xαA(t̂− ε̂).

α̂ =


α t < t̂− ε̂

(1, 0) t ∈ (t̂− ε̂, t̃)
(0, 1) t ∈ (t̃, Tα)

(0, 0) t > Tα.

The first-stage policy α̂ dominates α, so by Theorem 1, it must be that α̂ is
also optimal. Since α̂ is optimal and allocates exclusive attention to project B
after t̃, it must be, by Lemma 2, that

Pr[τB 6 Xα
B|τB > xα̂B(t̃)] · [q(B) + vA(Xα)]− cB · E(min{τB, Xα

B} − xα̂B(t̃)) > 0

Note that this implies that Pr[τB 6 Xα
B|τB > xα̂B(t̃)] > 0. Also, by Proposition 5,

vA(Xα) + q({B}) 6 q({A,B})− q({A}). Thus,

Pr[τB 6 Xα
B|τB > xα̂B(t̃)]·[q({A,B})−q({A})]−cB ·E(min{τB, Xα

B}−xα̂B(t̃)) > 0

This contradicts the fact that xα̂B(t̃) ∈ s∗∗B .
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• Case (iii). We consider three separate subcases, depending on how the stop-
ping point relates to the point at which the first-stage policy α crosses a stopping
region last.

Case (iii.a.) Stopping pointXα is far from both stopping regions: xαi (t̂) <

Xα
i for i = A,B.

Case (iii.b.) Stopping pointXα is far from region A, but close to stopping
region B: xαA(t̂) < Xα

A and xαB(t̂) = Xα
B. [The other case is symmetric.]

Case (iii.c.) Stopping point Xα is in both stopping regions: t̂ = Tα.

• Case (iii.a.). In this case we generate a contradiction by constructing two
first-stage policies that have the same stopping point as α but prioritize one of
the projects after time t̂. Formally, we define α1 and α2 as follows:

α1 =


α t < t̂

(1, 0) t ∈ (t̂, t̂+Xα
A − xαA(t̂))

(0, 1) t ∈ (t̂+Xα
A − xαA(t̂), Tα)

(0, 0) t > Tα.

α2 =


α t < t̂

(0, 1) t ∈ (t̂, t̂+Xα
B − xαB(t̂))

(1, 0) t ∈ (t̂+Xα
B − xαB(t̂), Tα)

(0, 0) t > Tα.

Both α1 and α2 dominate α, and therefore must also be optimal. Since α1 is
optimal, it must be that

Pr[τB 6 Xα
B | τB > xαB(t̂)]·[q({A,B})−q({A})]−cB·E

(
min{τB, Xα

B} − xαB(t̂) | τB > xαB(t̂)
)
> 0

Moreover, since Xα
B > xαB(t̂), it must be that Pr[τB 6 Xα

B | τB > xαB(t̂)] > 0.

vA(Xα) + q({B}) > q({A,B})− q({A}) (5)

Next, we show that vB(Xα) = 0. Suppose towards a contradiction that vB(Xα) >

0. Then, there exists x̂ > Xα
B such that

Pr[τB 6 x̂ | τB > Xα
B]·[q({A,B})−q({A})]−cB·E (min{τB, x̂} −Xα

B | τB > Xα
B) > 0

Thus, by Equation (5),

Pr[τB 6 x̂ | τB > Xα
B]·[q({B})+vA(Xα)]−cB·E (min{τB, x̂} −Xα

B | τB > Xα
B) > 0
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Which contradicts the optimality of stopping at Xα, and therefore proves that
vB(Xα) = 0. We will use this together with the optimality of α2 and super-
modularity of q to arrive to a contradiction.

Since α2 is optimal, we apply Lemma 2 to get that

Pr[τA 6 Xα
A | τA > xαA(t̂)]·[q({A})+vB(Xα)︸ ︷︷ ︸

=0

]−cA·E
(
min{τA, Xα

A} − xαA(t̂) | τA > xαA(t̂)
)
> 0

Xα
A > xαA(t̂) implies that Pr[τA 6 Xα

A | τA > xαA(t̂)] > 0. Thus, by strict
supermodularity of q, the previous equation implies

Pr[τA 6 Xα
A | τA > xαA(t̂)]·[q({A,B})−q({B})]−cA·E

(
min{τA, Xα

A} − xαA(t̂) | τA > xαA(t̂)
)
> 0

This contradicts the fact that xαA(t̂) is in the closure of s∗∗A , which is a subset of
s∗A.

• Case (iii.b.) In this case, the stopping point Xα is in the closure of to the strict
stopping region of project A. This implies that Xα

A ∈ s∗A, thus VA(Xα) = 0.
Note that this case is only possible if α allocates exclusively to project B after
t̂. By this and optimality of α, we can apply Lemma 2 to get that

Pr[τB 6 Xα
B | τB > xαB(t̂)]·[q({B})+vA(Xα)︸ ︷︷ ︸

=0

]−cB·E
(
min{τB, Xα

B} − xαB(t̂) | τB > xαB(t̂)
)
> 0

Since Xα
B > xαB(t̂) implies that Pr[τB 6 Xα

B | τB > xαB(t̂)] is strictly positive,
we can obtain, by applying the strict sumpermodularity of q in the previous
equation,

Pr[τB 6 Xα
B | τB > xαB(t̂)]·[q({A,B})−q({A})]−cB·E

(
min{τB, Xα

B} − xαB(t̂) | τB > xαB(t̂)
)
> 0

this contradicts the fact that xαA(t̂) is in the closure of s∗∗A and therefore in s∗A.

• Case (iii.c.) In this case, the stopping point of α is at both stopping regions.
Therefore, it is not possible to proceed as before by constructing first-stage
policies that dominate α and end up allocating exclusively to one of the projects.
Instead, the strategy for the proof lies in realizing that at the last instant in the
first stage the continuation payoff is negative, which contradicts the possibility
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of α being optimal.

The continuation value of following the policy sα at time t̂ − ε̂ can be written
as:

V :=

∫ Tα

Tα−ε̂

G(xα(t̃))

G(xα(Tα − ε̂))
·
∑
k=A,B

αk(hk(t̂) · q({k})− ck) dt̃

By strict supermodularity of q,

V <

∫ Tα

Tα−ε̂

G(xα(t̃))

G(xα(Tα − ε̂))
·
∑
k=A,B

αk(hk(t̂) · [q({A,B})−q({A,B}\{k})]−ck) dt̃

(hB ·[q({A,B})−q({A})]−cB)] and (hA ·[q({A,B})−q({B})]−cA)] are negative
for all t ∈ (Tα − ε̂, Tα). Thus, V < 0. This contradicts the optimality of α.

C.1 Lemmata

Lemma 1. For a one-project problem (F,Π, c) with F absolutely continuous the set
of strict stopping points s∗∗ is right-open, i.e. if x ∈ s∗∗, there exists an ε̄ > 0 such
that x+ ε ∈ s∗∗ for all ε ∈ [0, ε̄).

Proof. Let x ∈ s∗∗. Then h(x̂) := f(x̂)/1− F (x̂) must be weakly lower than c/B for
all x̂ in a right-neighborhood U of x. This implies that the function v(·) is weakly
increasing in U .

• Suppose v(x̂) = 0 for all x̂ ∈ U . Consider x0 ∈ U . For every x1 > x0, let x′ be
in U ∩ (x0, x1). Then π(x1, x0) 6

∫ x′
x0
S(t) · [h(t) ·B − c] dt̃+ S(x′) · v(x′) < 0.

• Suppose that the value is strictly positive for part U and let ε̄ = inf{e ∈ U :

v(x + e) > 0}. Then ε̄ > 0. To prove it, assume by contradiction that ε̄ = 0,
then there is a x′ > supU such that π(x′, x̂) > 0 for all x̂ ∈ U . Taking limit
x̂ → x, we obtain by continuity of π, that π(x′, x) > 0, which contradicts
x ∈ s∗∗. Finally, for any ε ∈ (0, ε̄), π(x′, x+ ε) is negative for all x′ > x+ ε.
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Lemma 2. Let projects be independent and sα be an optimal policy. Let t be such
that αi(t) = 0 for all t > t and define x := xαj (t). Then,

∫ Xα
j

x

1− Fj(x̃)

1− Fj(x)
· [ hj(x̃) · [q({j}) + vi(X

α)]− cj ] dx̃ > 0

Proof. Since payoffs are time-separable, an optimal policy must induce a positive
continuation value at each point. In general, the continuation value of a policy sα at
time t0 in the first stage is:∫ Tα

t0

G(xα(t))

G(xα(t0))

∑
k=A,B

αk(t) ·
[
Hk(x

α(t)) · v−k(xα−k(t) | xαk (t))− ck
]
dt

Projects are independent, hence the hazard rate in the first stage is the same as the
hazard rate in the second stage Hj(x

α(t)) = hj(x
α
j (t)). Also, independence implies

that the continuation value is constant and equal to vi(Xα). Changing variables, we
obtain the desired result.

C.2 Proof of Proposition 3

Proof. Since q is not supermodular, q({A}) + q({B}) > q({A,B}). Thus,

cA
q({A})

<
cA

q({A,B})− q({B})

Let i be the project with highest ci(q(A,B)− q({i})).
We construct the hazard rate of each project be such that: (i) hi is strictly de-

creasing. (ii) hi(0) = ci
q({A,B})−q(j) . (iii) limx→∞ hi(x) = ci

q({i}) .
Given that hi < ci

q({A,B})−q(j) , the DM stops after the first success: at most one
project will be developed. Given that hi > ci

q({i}) , it is never optimal to stop before
the first success. Thus, exactly one project will be developed.

Thus, the optimal first-stage strategy of the DM is the same as it would be in the
case of perfect substitutes: it is optimal for the agent to always work on the project
with the highest flow payoff, i.e. in project i iff

hi · q({i})− ci > hj · q({j})− cj

Moreover, the DM starts with project i. However, after some time with no success,
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the agent would like to switch to project j since

lim
x→∞

hi · q({i})− ci = 0 < hj(0) · q({j})− cj

D Affiliated projects

In Section 5, we showed that for independent projects, complementarity is the min-
imum requirement to guarantee an optimal policy that is frustration-free. In this
section, we expand on this result by relaxing the independence assumption by exam-
ining the situation where the projects are possitively affiliated.

Definition 12. The projects are positively (negatively) affiliated if they are jointly
continuous and the associated density function f : R2

+ → R is log-supermodular (log-
submodular), i.e.

f(τ ∨ τ ′) · f(τ ∧ τ ′) > (6)f(τ) · f(τ ′).

We will provide a sufficient condition for the optimal strategy to be frustration-
free under this relaxed assumption. A first thing to notice is how affiliation shapes
the optimal stopping decision in the second stage.

Lemma 3. Positive (negative) affiliated projects are encouraging (discouraging).

Proof. Let X and Y be two jointly continuous random variables. Let f : R2 → R++

be their joint probability density function and

fX(x) :=

∫ ∞
−∞

f(x, y) dy and fY (y) :=

∫ ∞
−∞

f(x, y) dx

be their respective marginal density functions. Finally, let

fY |X(y|x) :=
f(x, y)

fY (y)
and fX|Y (x|y) :=

f(x, y)

fX(x)

be the conditional density functions.

Lemma 4. If f is log-supermodular (log-submodular) then, for any x′ > x, the con-
ditional random variable Y |X = x dominates Y |X = x′ in the hazard rate order.
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Proof. Let f be log-supermodular. We want to see that

hY |X(y|x) :=
fY |X(y|x)

1− FY |X(y|x)

is decreasing in x for all y. For x′ > x and y′ > y,

f(x′, y) · f(x, y′) 6 f(x, y) · f(x′, y′)

⇒ fX(x′) · fY |X(y|x′) · fX(x) · fY |X(y′|x) 6 fX(x) · fY |X(y|x) · fX(x′) · fY |X(y′|x′)

⇒ fY |X(y|x′) · fY |X(y′|x) 6 fY |X(y|x) · fY |X(y′|x′)

⇒
∫ ∞
y

fY |X(y|x′) · fY |X(y′|x) dy′ 6
∫ ∞
y

fY |X(y|x) · fY |X(y′|x′) dy′

⇒ fY |X(y|x′) · [1− FY |X(y|x)] 6 fY |X(y|x) · [1− FY |X(y|x′)]

⇒
fY |X(y|x′)

1− FY |X(y|x′)
6

fY |X(y|x)

1− FY |X(y|x)

(The proof for the case of f sub-modular is similar but with all inequalities reversed.)

Sketch of the proof. Affiliation implies that the conditional hazard rate is ordered:
when projects are positively affiliated, the second stage hazard rate hi(x|τj) is in-
creasing in τj for all i ( decreasing for negatively affiliated projects). This hazard rate
dominance implies that Sj(τ) ⊆ Sj(τ

′) for any τ ′ 6 τ , which immediately implies
monotonicity of inf{Sj(·)}.

Let τ ′′j > τ ′j. When the projects are negatively affiliated, by Lemma 4, τi|τ ′′j hazard
rate dominates τi|τ ′j. For any τj, let Fτi|τj be the conditional cumulative distribution.
The stopping problem at the second stage can be written as:

max
x′>x

[Fτi|τj(x
′)− Fτi|τj(x)] · [q({i, j})− q({j})]− c ·

∫ x′

x

[1− Fτi|τj(x̃)] dx̃.

We can apply Claim 1. This implies that the solution to the problem with τj = τ ′′j

is larger in the strong set order than the solution to the problem with τj = τ ′j. Thus,
x̄i(τ

′′
j ) 6 x̄i(τ

′
j).
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When projects are positively affiliated, an increase in τj is an indicator of higher
increased attention required for project i, meaning that to complete project i with
after a certain amoint of cummulative attention decreases. As a result, if the DM is
willing to stop project i at x after τj, then they would also prefer to stop at x for any
higher value τ̂j > τj.

Notice that, by Corollary 2, when projects are positively affiliated, a first-stage
policy α is frustration-free if and only if Xα

A 6 inf{SA(Xα
B)} and Xα

B 6 inf{SB(Xα
A)}.

This means that, for positively affiliated projects, the value V of frustration-free
policies is pinned-down by Xα. Moreover, to compute the value of any regret-free
policy, we can simply assume that attention is first allocated to any of the projects.

Finally, sometimes projects are such that once stopping is optimal, it is optimal
forever. When this is true for a project in the second stage, we say that the project
satisfies the threshold property. Formally,

Definition 13. Project i satisfies the threshold property iff Si(τj) is convex and
unbounded for all τj.

A sufficient condition for a project to satisfy the threshold property is to have a
decreasing conditional hazard rate. This condition is extensively assumed in experi-
mentation setups. Next, we present the main theorem regarding affiliated projects.

Theorem 3. If projects are complements, negatively affiliated, and satisfy the thresh-
old property, then there is an optimal strategy that is regret-free.

Proof. TBA.

Intuitively, for positively affiliated projects, when a policy is frustration-free, the
amount of attention that the DM is willing to allocate to one of the projects if there
is no news is less than the amount of attention that he would allocate if the other
project is completed. Thus, he is willing to allocate said attention independently of
the outcome of the other project. The order in which the agent allocates this attention
does not affect then the total payoff.

E Proofs of Section 6
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E.1 Preliminaries

Let δ := λH − λL. Using Bayes’ rule, the beliefs pi(xi), which denote the probability
that the project i is easy, given that xi cumulative attention was allocated to project
i and project i was not completed, evolves according to:

pi(xi) =
pie
−δxi

(1− pi) + pie−δxi

As the agent becomes more pessimistic, the subjective hazard rate hi(xi) becomes
lower.

hi(xi) = λL + pi(xi) · δ

For x < x̄,

vi(x) =
1

1− F (x)
·
∫ x̄

x

[1− F (x̃)] · (h(x̃) · q − c) dx̃ (6)

Next, we introduce two important lemmata: First, in Lemma 5, we prove that
the projects are is sufficient to identify the monotonicity of project i’s hazard-to-
value ratio. Then, Lemma 6 shows that when hazard-to-value ratios are increasing
or decreasing changes the sign of the determinant of the Hessian of the optimization
problem maxX V̂ (X).

Lemma 5. hi(x)/vi(x) is monotone. Moreover, hi(x)/vi(x) is increasing if and only
if projects are cost effective when assorted.

Proof. For this proof, we only focus on one of the projects, so we drop the subscript.
Deriving Equation (6),

v′(x) =
f(x)

[1− F (x)]2

∫ x̄

x

[1− F (x̃)] · (h(x̃) · q − c) dx̃ − (h(x) · q − c)

= h(x) · v(x) + c− h(x) · q

= c− h(x) · [q − v(x)].

Now we show that the monotonicity of h(x)/v(x) depends on whether v(x) is
higher or lower than an expression R(x).
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sgn

(
∂(h(x)/v(x))

∂x

)
= sgn [h′(x) · v(x)− h(x) · v′(x)]

= sgn [h′(x) · v(x)− h(x) · [c− h(x) · (q − v(x))]]

= sgn

h(x) · [q · h(x)− c ]

h(x)2 + h′(x)︸ ︷︷ ︸
R(x)

− v(x)


h(x)

v(x)
decreasing ⇔ R(x) < v(x) (7)

It will be useful to switch to belief space.
Let ĥ := λL + p · δ. Notice that ĥ(p(x)) = h(x). Then

h′(x) = ĥ′(p)︸︷︷︸
δ

· ∂p(x)

∂x︸ ︷︷ ︸
−δ·p·(1−p)

R̂(p) :=
ĥ(p) · (q · ĥ(p)− c)
ĥ(p)2 + δ2 · p · (1− p)

(8)

Deriving Equation (8) twice,

R̂′′(p) =
2 δ2 · λL · λH · (q · λL · λH − c · (λL + λH))

(λ2
L + p δ (λL + λH))3

R̂′′(p) > 0 ⇔ q · λL · λH − c · (λL + λH) > 0

⇔ q >
c

λL
+

c

λH

⇔ project are not
cost-effective when assorted.

(9)

There are two cases to be considered separately: λL < c and λL > c.

Case I: λL · q > c Since h(x) · q > λL · q > c, the agent that completes a project
does never stop in the second stage. The value v̂ is linear in the beliefs:
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v̂(p) = q − p · c
λH
− (1− p) · c

λL

Since

v̂(0) = q − c

λL
= R̂(0)

and

v̂(1) = q − c

λH
= R̂(1)

If projects are effective when assorted, R is concave by Equation (9) and thus

v(p) < R(p) ∀p ∈ (0, 1)

And then h(x)/v(x) is increasing by Equation (8).
If, on the other hand, projects are not effective when assorted, R is convex by

Equation (9) and thus
v(p) > R(p) ∀p ∈ (0, 1)

And then h(x)/v(x) is decreasing by Equation (8).

Case II: λL · q < c In this case, the agent stops putting attention to the remaining
project if sufficient attention is allocated without success. More specifically, the agent
will stop allocating attention to the remaining project when p reaches p̂ := c/q−l

h−l .
v is strictly convex (information is valuable). Moreover, we can show that R is

concave:

λL · q < c ⇒ λH
λL + λH

· λL · q < c ⇔ q <
c

λL
+

c

λH

⇔ project are not
cost-effective when assorted.

Since v̂(1) = q − c
λH

= R̂(1) and v(p̂) = 0 = R(p̂),

v̂(p) < R̂(p) for any p ∈ (p̂, 1)

h(x)/v(x) decreasing
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Lemma 6. If hi(x)/vi(x) is strictly decreasing for i = A,B, it is optimal to work on
the projects in sequence.

Proof. Since projects are complements and independent (thus positive affiliated), ??
indicates that there is an optimal first-stage strategy α that is regret-free. Let X =

Xα. By ??, V̂A(X) = V̂B(X) = V (X). Moreover, by optimality,

X ∈ arg max
X̃

V̂i(X̃) for i = A,B

By contradiction assume that X is interior. Then the first-order conditions from
deriving Equation (3) give us that

hA(XA) · vB(XB) = hB(XB) · vA(XA) = c (10)

Claim: For an interior optimal point X,

∑
i=A,B

∂hi(X)/vi(X)

∂Xi

> 0 ⇒
∏
i=A,B

h′i(Xi) · vi(Xi)

hi(Xi) · v′i(Xi)
< 1

Using Equation (10),

hA(XA) · v′A(XA)

v2
A(XA)

=
hB(XB) · v′A(XA)

vB(XB) · vA(XA)
=
hA(XA) · v′B(XB)

vA(XA) · vB(XB)
=
hB(XB) · v′B(XB)

v2
B(XB)

Where the first and last equality use hA(XA)/vA(XA) = hB(XB)/vB(XB) and the
intermediate one uses that

hB(XB) · v′A(XA) = hB(XB) · [c− hA(XA) · (q − vA(XA)]

= −hB(XB) · hA(XA) · [q − vA(XA)− vB(XB)]

Since c = hA(XA) · vB(XB)) and equal to hA(XA) · v′B(XB) by symmetry. So,
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∑
i=A,B

∂hi(X)/vi(X)

∂Xi

> 0 ⇔
∑
i=A,B

h′i(Xi) · vi(Xi)− hi(Xi) · v′i(Xi)

v2
i (Xi)

> 0

⇔
∑
i=A,B

hi(Xi) · v′i(Xi)

v2
i (Xi)

(
h′i(Xi) · vi(Xi)

hi(Xi) · v′i(Xi)
− 1

)
> 0

⇔
[
h′A(XA) · vA(XA)

hA(XA) · v′A(XA)
+
h′B(XB) · vB(XB)

hB(XB) · v′B(XB)

]
< 2

⇔ h′A(XA) · vA(XA)

hA(XA) · v′A(XA)
· h
′
B(XB) · vB(XB)

hB(XB) · v′B(XB)
< 1

Where the third implication uses that vA is decreasing and the last one uses that
the sum of two positive numbers being less than two implies that the product is less
than one.

The determinant of the Hessian H for VA(X) is

det(H) = [1−FA(XA)] · [1− FB(XB)]·

· [h′A(XA) · h′B(XB) · vA(XA) · vB(XB) − hA(XA) · hB(XB) · v′A(XA) · v′B(XB)]

So
det(H) < 0 ⇔ h′A(XA) · vA(XA)

hA(XA) · v′A(XA)
· h
′
B(XB) · vB(XB)

hB(XB) · v′B(XB)
< 1

And det(H) < 0 rules implies that X is a saddle point, and thus not optimal. Thus
it must be that the solution is not interior.

Proposition 4

• If the projects are not cost-effective when assorted, then it is efficient to work
on them in sequence starting with the least promising one.

• If the projects are cost-effective when assorted, then it is efficient to work more
on the most promising project.

Proof. We prove the two parts of the proposition separately.

Part I : If projects are not cost-effective when assorted, then by Lemma 5 we know
that hi(x)/vi(x) is decreasing for i = A,B. By Lemma 6 we know that it must be
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optimal to work on the projects in sequence. It remains to show that it is efficient to
start with the least promising project.

Assume WLOG that pA > pB and consider the alternative problem in which the
initial beliefs are symmetric pA for both projects. By symmetry, there must be two
solutions (X∗, 0) and (0, X∗). Consider the second solution, the one that works on
project B. The original problem is the same as the continuation problem of that
problem after x attention was allocated to project B without success, where x is such
that pA(x) = pB. Since the continuation strategy cannot be suboptimal, it must be
that (0, X∗ − x) is a solution to the original problem. Thus, the agent works on the
projects in sequence starting from the least promising one.

Part II :

hi(Xi)

vi(Xi)
↘ ⇔ h′i(Xi) · vi(Xi)− hi(Xi) · v′i(Xi) < 0

⇔ h′i(Xi) · vi(Xi)

hi(Xi) · v′i(Xi)
> 1

So,

hi(Xi)

vi(Xi)
↘ for i = A,B ⇒ det(H) =

h′A(XA) · vA(XA)

hA(XA) · v′A(XA)
· h
′
B(XB) · vB(XB)

hB(XB) · v′B(XB)
> 1

This implies that there is at most one interior candidate for solution that satisfies
the first order conditions hA(XA) · vB(XB) = hB(XB) · vA(XA) = c, and that if this
candidate exist, it is the actual solution.

As before, assume WLOG that pA > pB and consider the alternative problem
in which the initial beliefs are symmetric pA for both projects. By symmetry, the
solution candidate is symmetrical (X∗, X∗). If pB > pA(X∗), the original problem is
the same as the continuation problem of that problem after x attention was allocated
to project B without success, where x is such that pA(x) = pB. Since the continuation
strategy cannot be suboptimal, it must be that (X∗, X∗−x) is a solution to the original
problem. If pB < pA(X∗), the solution will not be interior. In that case, the agent
works only on project i in the first stage with hi(X∗i ) ·vj(0) = c > hj(0) ·vi(X∗i ). Since

43



hi(x)/vi(x) is decreasing, it must be that hi(0)/vi(0) > hj(0)/vj(0), what proves that
i is the project with highest prior (since p is decreasing in x, ĥ(p)/v̂(p) is increasing).
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